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Solution

Each problem is worth 5 points.

Problem 1. Let (an)n≥1 be a sequence with a1 = 1 and

an+1 =
⌊
an +√an + 1

2

⌋
for all n ≥ 1, where bxc denotes the greatest integer less than or equal to x. Find
all n ≤ 2013 such that an is a perfect square.

Solution. We will show by induction that an = 1+bn
2 cb

n+1
2 c, which is equivalent

to a2m = 1 + m2 and a2m+1 = 1 + m(m + 1). Clearly this is true for a1.
If a2m+1 = 1 + m(m + 1) then

a2m+2 =
⌊
m2 + m + 1 +

√
m2 + m + 1 + 1

2

⌋
,

and since m + 1
2 <

√
m2 + m + 1 < m + 1 (easily seen by squaring), we get

a2m+2 = (m2 + m + 1) + (m + 1) = 1 + (m + 1)2.
And if a2m = 1 + m2 then

a2m+1 =
⌊
m2 + 1 +

√
m2 + 1 + 1

2

⌋
,

and here m <
√

m2 + 1 < m + 1
2 , so a2m+1 = (m2 + 1) + m = 1 + m(m + 1).

If m ≥ 1 then m2 < 1 + m2 < (m + 1)2 and m2 < m2 + m + 1 < (m + 1)2, so an

cannot be a perfect square if n > 1. Therefore a1 = 1 is the only perfect square in
the sequence.

Problem 2. In a football tournament there are n teams, with n ≥ 4, and each
pair of teams meets exactly once. Suppose that, at the end of the tournament,
the final scores form an arithmetic sequence where each team scores 1 more point
than the following team on the scoreboard. Determine the maximum possible score
of the lowest scoring team, assuming usual scoring for football games (where the
winner of a game gets 3 points, the loser 0 points, and if there is a tie both teams
get 1 point).

Solution. Note that the total number of games equals the number of different
pairings, that is, n(n− 1)/2. Suppose the lowest scoring team ends with k points.
Then the total score for all teams is

k + (k + 1) + · · ·+ (k + n− 1) = nk + (n− 1)n
2 .

Some games must end in a tie, for otherwise, all team scores would be a multiple
of 3 and cannot be 1 point apart. Since the total score of a tie is only 2 points
compared to 3 points if one of the teams wins, we therefore know that

nk + (n− 1)n
2 < 3 · n(n− 1)

2 ,



so nk < n(n − 1), and hence k < n − 1. It follows that the lowest scoring team
can score no more than n− 2 points.
We now show by induction that it is indeed possible for the lowest scoring team
to score n− 2 points.
The following scoreboard shows this is possible for n = 4:

− 3 1 1 5
0 − 1 3 4
1 1 − 1 3
1 0 1 − 2

Now suppose we have a scoreboard for n teams labelled Tn−2, . . . , T2n−3, where
team Ti scores i points. Keep the results among these teams unchanged while
adding one more team.
Write n = 3q + r with r ∈ {1,−1, 0}, and let the new team tie with just one of the
original teams, lose against q teams, and win against the rest of them. The new
team thus wins n−1−q games, and gets 1+3(n−1−q) = 3n−2−3q = 2n−2+r
points.
Moreover, we arrange for the q teams which win against the new team to form
an arithmetic sequence Tj, Tj+3, . . . , Tj+3(q−1) = Tj+n−r−3, so that each of them,
itself having gained three points, fills the slot vacated by the next one.
(i) If r = 1, then let the new team tie with team Tn−2 and lose to each of the teams
Tn−1, Tn+2, . . . , Tn−1+n−r−3 = T2n−5.
Team Tn−2 now has n−1 points and takes the place vacated by Tn−1. At the other
end, T2n−5 now has 2n−2 points, just one more than the previous top team T2n−3.
And the new team has 2n − 2 + r = 2n − 1 points, becoming the new top team.
The teams now have all scores from n− 1 up to 2n− 1.
(ii) If r = −1, then let the new team tie with team T2n−3 and lose to each of the
teams Tn−2, Tn+1, . . . , Tn−2+n−r−3 = T2n−4.
The old top team T2n−3 now has 2n− 2 points, and its former place is filled by the
new team, which gets 2n− 2 + r = 2n− 3 points. T2n−4 now has 2n− 1 points and
is the new top team. So again we have all scores ranging from n− 1 up to 2n− 1.
(iii) If r = 0, then let the new team tie with team Tn−2 and lose to teams
Tn−1, Tn+2, . . . , Tn−1+n−r−3 = T2n−4.
Team Tn−2 now has n−1 points and fills the slot vacated by Tn−1. At the top end,
T2n−4 now has 2n− 1 points, while the new team has 2n− 2 + r = 2n− 2 points,
and yet again we have all scores from n− 1 to 2n− 1.
This concludes the proof.

See next page for problem 3.
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Problem 3. Define a sequence (nk)k≥0 by n0 = n1 = 1, and n2k = nk + nk−1 and
n2k+1 = nk for k ≥ 1. Let further qk = nk/nk−1 for each k ≥ 1. Show that every
positive rational number is present exactly once in the sequence (qk)k≥1.

Solution. Clearly, all the numbers nk are positive integers. Moreover,

q2k = n2k

n2k−1
= nk + nk−1

nk−1
= qk + 1, (1)

and similarly,
1

q2k+1
= n2k

n2k+1
= nk + nk−1

nk

= 1
qk

+ 1. (2)

In particular, qk > 1 when k is even, and qk < 1 when k ≥ 3 is odd.
We will show the following by induction on t = 2, 3, 4, . . . :
Claim: Every rational number r/s where r, s are positive integers with gcd(r, s) =
1 and r + s ≤ t occurs precisely once among the numbers qk.
The claim is clearly true for t = 2, since then r/s = 1/1 = 1 is the only possibility,
and q1 is the only occurrence of 1 in the sequence.
Now, assume that u ≥ 3 and that the claim holds for t = u − 1. Let r and s be
positive integers with gcd(r, s) = 1 and r + s = u.
First, assume that r > s. We know that r/s = qm is only possible if m is even.
But

r

s
= q2k ⇔

r − s

s
= qk

by (1), and moreover, the latter equality holds for precisely one k according to the
induction hypothesis, since gcd(r − s, s) = 1 and (r − s) + s = r ≤ t.
Next, assume that r < s. We know that r/s = qm is only possible if m is odd. But

r

s
= q2k+1 ⇔

s

r
= 1

q2k+1
⇔ s− r

r
= 1

qk

by (2), and moreover, the latter equality holds for precisely one k according to the
induction hypothesis, since gcd(s− r, r) = 1 and (s− r) + r = s ≤ t.

See next page for problem 4.
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Problem 4. Let ABC be an acute angled triangle, and H a point in its interior.
Let the reflections of H through the sides AB and AC be called Hc and Hb,
respectively, and let the reflections of H through the midpoints of these same sides
be called H ′c and H ′b, respectively. Show that the four points Hb, H ′b, Hc, and H ′c
are concyclic if and only if at least two of them coincide or H lies on the altitude
from A in triangle ABC.

Solution. If at least two of the four points Hb, H ′b, Hc, and H ′c coincide, all
four are obviously concyclic. Therefore we may assume that these four points are
distinct.
Let Pb denote the midpoint of segment HHb, P ′b the midpoint of segment HH ′b, Pc

the midpoint of segment HHc, and P ′c the midpoint of segment HH ′c.
The triangle HHbH

′
b being right-angled in Hb, it follows that the perpendicular

bisector `b of the side HbH
′
b goes through the point P ′b. Since the segments PbP

′
b

and HbH
′
b are parallel and P ′b is the midpoint of the side AC, we then conclude

that `b also goes through the circumcentre O of triangle ABC.
Similarly the perpendicular bisector `c of the segment HcH

′
c also goes through O.

Hence the four points Hb, H ′b, Hc, and H ′c are concyclic if and only if also the
perpendicular bisector ` of the segment H ′bH

′
c goes through the point O. Since

H ′bH
′
c ‖ P ′bP

′
c ‖ BC, this is the case if and only if ` is the perpendicular bisector m

of the segment BC.
Let k denote the perpendicular bisector of the segment P ′bP

′
c. Since the lines ` and

m are obtained from k by similarities of ratio 2 and centres H and A, respectively,
they coincide if and only if HA is parallel to m. Thus Hb, H ′b, Hc, and H ′c are
concyclic if and only if H lies on the altitude from A in triangle ABC.
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Click here to experiment with the figure in GeoGebra.
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http://www.georgmohr.dk/nmcperm/probl/2013/sol.ggb

