
The 26th Nordic Mathematical Contest

Tuesday, 27 March 2012

Solutions

Each problem is worth 5 points.

Problem 1. The real numbers a, b, c are such that a2 + b2 = 2c2, and also such
that a 6= b, c 6= −a, c 6= −b. Show that

(a + b + 2c)(2a2 − b2 − c2)

(a− b)(a + c)(b + c)

is an integer.

Solution. Let us first note that

a + b + 2c

(a + c)(b + c)
=

(a + c) + (b + c)

(a + c)(b + c)
=

1

a + c
+

1

b + c
.

Further we have

2a2 − b2 − c2 = 2a2 − (2c2 − a2)− c2 = 3a2 − 3c2 = 3(a + c)(a− c),

and

2a2 − b2 − c2 = 2(2c2 − b2)− b2 − c2 = 3c2 − 3b2 = 3(b + c)(c− b),

so that

(a + b + 2c)(2a2 − b2 − c2)

(a− b)(a + c)(b + c)
=

3(a− c) + 3(c− b)

a− b
=

3(a− b)

a− b
= 3,

an integer.

Problem 2. Given a triangle ABC, let P lie on the circumcircle of the triangle
and be the midpoint of the arc BC which does not contain A. Draw a straight
line l through P so that l is parallel to AB. Denote by k the circle which passes
through B, and is tangent to l at the point P . Let Q be the second point of
intersection of k and the line AB (if there is no second point of intersection,
choose Q = B). Prove that AQ = AC.

Solution I. There are three possibilities: Q between A and B, Q = B, and B
between A and Q. If Q = B we have that ∠ABP is right, and AP is a diameter
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of the circumcircle. The triangles ABP and ACP are then congruent (they have
AP in common, PB = PC, and both have a right angle opposite to AP ). Hence
ir follows that AB = AC.

The solutions in the other two cases are very similar. We present the one in the
case when Q lies between A and B.

The segment AP is the angle bisector of the angle at A, since P is the midpoint
of the arc BC of the circumcircle which does not contain A. Also, PC = PB.
Since the segment QB is parallel to the tangent to k at P , it is orthogonal to
the diameter of k through P . Thus this diameter cuts QB in halves, to form two
congruent right triangles, and it follows that PQ = PB. We have (in the usual

notation) ∠PCB = ∠PBC =
α

2
, and

∠AQP = 180◦ − ∠BQP = 180◦ − ∠QBP = 180◦ − β − α

2
=

α

2
+ γ = ∠ACP.

Hence the triangles AQP and ACP are congruent (two pairs of equal angles and
one pair of equal corresponding sides), and it follows that AC = AQ.

Solution II. Again we consider the case when Q is between A and B. We shall

use trigonometry. As above, we have ∠ABP = β +
α

2
, and thus

QB = 2PB cos
(
β +

α

2

)
= 2PB cos

(
π − α

2
− γ

)
,

and
AQ = 2R sin γ − 4R sin

α

2
cos

(
π − α

2
− γ

)
.

Since AC = 2R cos β, it remains to prove that

sin β = sin γ + 2 sin
α

2
cos

(α

2
+ γ

)
,

which is easy, using standard trigonometry.

Problem 3. Find the smallest positive integer n, such that there exist n integers
x1, x2, . . . , xn (not necessarily different), with 1 ≤ xk ≤ n, 1 ≤ k ≤ n, and such
that

x1 + x2 + · · ·+ xn =
n(n + 1)

2
, and x1x2 · · ·xn = n!,

but {x1, x2, . . . , xn} 6= {1, 2, . . . , n}.

Solution. If it is possible to find a set of numbers as required for some n = k,
then it will also be possible for n = k + 1 (choose x1, . . . , xk as for n = k, and
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let xk+1 = k + 1). Thus we have to find a positive integer n such that a set as
required exists, and prove that such a set does not exist for n− 1.

For n = 9 we have 8 + 6 + 3 = 9 + 4 + 4, and 8 · 6 · 3 = 9 · 4 · 4, so that a set of
numbers as required will exist for all n ≥ 9. It remains to eliminate n = 8.

Assume x1, . . . , x8 are numbers that satisfy the conditions of the problem. Since
5 and 7 are primes, and since 2 · 5 > 8 and 2 · 7 > 8, two of the x-numbers
have to be equal to 5 and 7; without loss of generality we can assume that
x1 = 5, x2 = 7. For the remaining numbers we have x3x4 · · ·x8 = 27 · 32, and
x3 +x4 + · · ·+x8 = 36− 12 = 24. Since 32 = 9 > 8, it follows that exactly two of
the numbers x3, . . . , x8 are divisible by 3, and the rest of the numbers are powers
of 2. There are three possible cases to consider: two of the numbers are equal to
3; two of the numbers are equal to 6; one number is equal to 3 and another one
is equal to 6.

Case 1. x3 = x4 = 3

We then have x5 + x6 + x7 + x8 = 18, and x5x6x7x8 = 27. The possible powers of
2 with sum 18 are (1, 1, 8, 8) and (2, 4, 4, 8), none of them gives the product 27.

Case 2. x3 = 3, x4 = 6

We have x5 +x6 +x7 +x8 = 15, and x5x6x7x8 = 26. It is immediate to check that
the only possibility for the remaining numbers is (1, 2, 4, 8), which is not allowed,
since it gives {x1, x2, . . . , x8} = {1, 2, . . . , 8}.

Case 3. x3 = x4 = 6

Now we have x5 + x6 + x7 + x8 = 12, and x5x6x7x8 = 25. The possible powers
of 2 which give the correct sum are (1, 1, 2, 8) and (2, 2, 4, 4), but again, they do
not give the desired product.

Thus the smallest positive integer with the required property is 9.

Problem 4. The number 1 is written on the blackboard. After that a sequence
of numbers is created as follows: at each step each number a on the blackboard
is replaced by the numbers a − 1 and a + 1; if the number 0 occurs, it is erased
immediately; if a number occurs more than once, all its occurrences are left on
the blackboard. Thus the blackboard will show 1 after 0 steps; 2 after 1 step;
1, 3 after 2 steps; 2, 2, 4 after 3 steps, and so on. How many numbers will there
be on the blackboard after n steps?

Solution I. Let S be a set of different numbers, all of them less than 2n−1,
and create two new sets as follows: S1, consisting of all the numbers in S except
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the smallest one, and S2, with elements the smallest element of S and all the
numbers we get by adding 2n−1 to each number in S. Note that if the number of
elements in S is a, then S1 has a − 1 elements, and S2 has a + 1 elements. This
corresponds to the operations we are allowed to perform on the blackboard, if we
throw away all empty sets. If we now operate simultaneously on the sets and on
the numbers, then after n steps the number of sets will be exactly equal to the
number of numbers on the blackboard.

Let us see what the set operations look like. We must start with a set, con-
sisting only of the number 0. Next we get an empty set (thrown away), and
the set {0, 1}; next the sets {1} and {0, 2, 3}; next again (an empty set and)
{1, 5}, {2, 3}, {0, 4, 6, 7}, etc.

It is now fairly easy to prove by induction that after n steps

(1) each number less than 2n appears in exactly one set;
(2) the number of elements in the sets corresponds exactly to the numbers on the
blackboard;
(3) if the numbers in each set are written in increasing order, then the differ-
ence between two neighbours is a power of 2; thus the binary representations of
two neighbours differ in exactly one position (in the binary system the exam-
ple above looks like this: {0}; {0, 1}; {01}, {00, 10, 11}; {001, 101}, {010, 011},
{000, 100, 110, 111});
(4) if k is the number of ones in the binary code of the smallest number of a set,
and l the number of ones in the largest number of the same set, then k + l = n;

(5) each set contains exactly one number with
⌊n

2

⌋
ones.

The last property tells us that the number of sets after n steps is equal to the

number of numbers such that their binary representation contains exactly
⌊n

2

⌋
ones out of n digits, i.e. the number of numbers on the blackboard after n steps

will be equal to

(
n

bn
2
c

)
.

Solution II. Denote by σn the number of numbers on the blackboard after n
steps (thus σ0 = σ1 = 1, σ2 = 2, σ3 = 3, . . .). Regard all points in the plane with
coordinates (m, n), where m, n are defined as follows: the number n is written
on the blackboard after m steps (m, n are positive integers by the condition). At
each node, i.e. each point with integer coordinates of the above type, write the
number of occurrences of n after m steps. Thus the number written at (3, 2) will
be the number of occurrences of 2 directly after step 3, which is 2. Observe that
the number at each node is equal to the number of ways to reach this node from
the point (0, 1), walking from one node to another one step at the time, from
left to right and either up or down, without going down to the horizontal axis.
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(Since all zeroes are erased, we can never reach the horizontal axis.) For each m
we want to find the total number of paths σm, reaching the vertical line y = m.

If we were to remove the constraint that we are not allowed to step on the
horizontal axis (i.e. that all zeroes are erased), we would get Pascal’s triangle,
and the total number of paths would be 2m. The binomial coefficient at each
node is then the total number of paths to reach this node, without constraint.

We need to find and subtract the number of paths from A(0, 1) to a point B
among the allowed nodes, which go down to the horizontal axis. Choose such a
path, and find a new one by reflecting in the horizontal axis the part between the
starting point (0, 1) and the path’s first contact with the horizontal axis. The
original path and the reflected one will end at the same point (among the allowed
nodes); the reflected one will start at A′(0,−1). We have constructed a bijection
between the original set of paths from A to B that reach down to the horizontal
axis and the set of paths from A′ to B. Observe that starting at A′ we can get
another copy of Pascal’s triangle, which is the original one, translated two units
down. It is easier to count the number of paths from A′ to B, since they are not
subject to any constraints. Thus the number of ”positive” paths from A to the
points above the horizontal axis for m = 2k will be((

2k

2k

)
+

(
2k

2k − 1

)
+ · · ·+

(
2k

k + 1

)
+

(
2k

k

))
−

−
((

2k

2k

)
+

(
2k

2k − 1

)
+ · · ·+

(
2k

k + 1

))
=

(
2k

k

)
.

In case m is odd, a modification of the above argument gives the answer obtained
in solution I.
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