
24th Nordic Mathematical Contest, 13th of April, 2010

Solutions of the problems

1. A function f : Z+ → Z+, where Z+ is the set of positive integers, is non-decreasing
and satisfies f(mn) = f(m)f(n) for all relatively prime positive integers m and n. Prove
that f(8)f(13) ≥ (f(10))2.

Solution: Since f is non-decreasing, f(91) ≥ f(90), which (by factorization into rela-
tively prime factors) implies f(13)f(7) ≥ f(9)f(10). Also f(72) ≥ f(70), and therefore
f(8)f(9) ≥ f(7)f(10). Since all values of f are positive, we get

f(8)f(9) · f(13)f(7) ≥ f(7)f(10) · f(9)f(10),

and dividing both sides by f(7)f(9) > 0,

f(8)f(13) ≥ f(10)f(10) = (f(10))2.

Remark: More generally, it can be shown that every multiplicative non-decreasing
function f : Z+ → Z+ is a power function, i.e., there is k ∈ N such that for every
n ∈ Z+, we have f(n) = nk. Once this is known, the solution is of course trivial.
This result is a direct corollary of a theorem by Erdős, published in On the distribution

function of additive functions, Ann. of Math. (2) 47 (1946), 1–20, Theorem XI.

2. Three circles ΓA, ΓB and ΓC share a common point of intersection O. The other
common point of ΓA and ΓB is C, that of ΓA and ΓC is B, and that of ΓC and ΓB is
A. The line AO intersects the circle ΓA in the point X 6= O. Similarly, the line BO

intersects the circle ΓB in the point Y 6= O, and the line CO intersects the circle ΓC in
the point Z 6= O. Show that

|AY | |BZ| |CX|

|AZ| |BX| |CY |
= 1.

Solution: Observe ]AOY = ]BOX = α (vertical angles). By looking on peripheral
angles we further get

α = ]BCX = ]BOX = ]AOY = ]ACY.

In the same manner we get

β = ]BAZ = ]BOZ = ]COY = ]CAY,

γ = ]ABZ = ]AOZ = ]COX = ]CBX.
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We have α + β + γ = ]AOY + ]Y OC + ]COX = 180◦ and hence all triangels
CAY , CXB and ZAB have angles α, β and γ and hence they are similar. This gives
|AY |
|CY | = |AB|

|BZ| and |CX|
|BX| = |AZ|

|AB| , i.e.

|AY | |BZ| |CX|

|AZ| |BX| |CY |
=

|AB| |AZ| |BZ|

|BZ| |AB| |AZ|
= 1.

3. Laura has 2010 lamps connected with 2010 buttons in front of her. For each button,
she wants to know the corresponding lamp. In order to do this, she observes which lamps
are lit when Richard presses a selection of buttons. Richard always presses the buttons
simultaneously, so the lamps are lit simultaneously, too.
a) If Richard chooses the buttons to be pressed, what is the maximum number of

different combinations of buttons he can press until Laura can assign the buttons
to the lamps correctly?

b) Supposing that Laura will choose the combinations of buttons to be pressed, what
is the minimum number of attempts she has to do until she is able to associate the
buttons with the lamps in a correct way?

Solution: a) Let us say that two lamps are separated if one of the lamps is turned on
while the other lamp remains off. Laura can find out which lamps belong to the buttons
if every two lamps are separated. Let Richard choose two arbitrary lamps. To begin
with, he turns both lamps on and then varies all the other lamps in all possible ways.
There are 22008 different combinations for the remaining 2010 − 2 = 2008 lamps. Then
Richard turns the two chosen lamps off. Also, at this time there are 22008 combinations
for the remaining lamps. Consequently, for the 22009 combinations in all, it is not
possible to separate the two lamps of the first pair. However, we cannot avoid the
separation if we add one more combination. Indeed, for every pair of lamps, we see
that if we turn on a combination of lamps 22009 + 1 times, there must be at least one



setup where exactly one of the lamps is turned on and the other is turned off. Thus,
the answer is 22009 + 1.

b) For every new step with a combination of lamps turned on, we get a partition of
the set of lamps into smaller and smaller subsets where elements belonging to the same
subset cannot be separated. In each step every subset is either unchanged or divided
into two smaller parts, i.e. the total number of subsets after k steps will be at most 2k.
We are finished when the number of subsets is equal to 2010, so the answer is at least
dlog2 2010e = 11. But it is easy to see that Laura certainly can choose buttons in every
step in such a way that there are at most 211−k lamps in every part of the partition
after k steps. Thus, the answer is 11.

Remark: More formally, let B be the set of 2010 buttons and L be the set of lamps.
The wording of the problem should be interpreted so that the connections between
buttons and lamps form a bijection f : B → L and the task is to determine that f .
During the process, distinct combinations Bk ⊂ B of buttons are pressed, and lamps
f [Bk] are lit, k = 1, 2, . . . , s. Laura is not finished, unless for every bijection g: B → L

with the property that g[Bk] = f [Bk] holds for every k = 1, . . . , s, we have that g = f .
Let us elaborate this a bit: The sets f [B1], . . . , f [Bk] generate a partition Πk of L. Then
lamps x and y are separated iff they belong to different parts. Furthermore, f is not
uniquely determined, unless all lamps are separated. The ideas written above may now
be carried over in this more formal setting.

4. A positive integer is called simple if its ordinary decimal representation consists
entirely of zeroes and ones. Find the least positive integer k such that each positive
integer n can be written as n = a1 ± a2 ± a3 ± . . .± ak where a1, . . . , ak are simple.

Solution: First we observe that if a positive integer n has a representation in terms of
l simple numbers, then it has also a representation in terms of l + 1 simple numbers.
Indeed, suppose n = a1 ± a2 ± a3 ± . . .± al is such a representation. Let 10r, r ∈ N, be
bigger than any of the numbers a1, . . . , al, and put a′

1 = 10r + a1. Then obviously a′
1 is

also simple and n = a′
1 ± a2 ± a3 ± . . .± al − 10r is a required representation.

Let n be an arbitrary positive integer. We write n = a1 + a2 + . . . + a9, where aj

has 1’s on the places where n has digits greater or equal to j and 0’s on the other places.
Then n = a1 + a2 + . . . + a9, each ai is either simple or zero, so n has been represented
in terms of at most 9 simple integers. According to the preceding paragraph, this can
be made exactly 9, and we get k ≤ 9.

On the other hand, consider n = 10203040506070809. Suppose n = a1 + a2 +
. . . + aj − aj+1 − aj+2 − . . . − ak where a1, . . . ak are simple, k < 9. Then all digits of
b1 = a1 + . . . + aj are not greater than j and all digits of b2 = aj+1 + . . . + ak are not
greater than k − j. We have n + b2 = b1. We perform column addition of n and b2 and
consider digit j + 1 in the number n. There will be no summand coming from lower
decimal places, since the sum there is less that 10 . . .0 + 88 . . .8 = 98 . . .8. So we get
the sum of j + 1 and the corresponding digit in b2, the resulting digit should be less
than j + 1 thus in b2 we have at least 9 − j ≤ k − j, implying k ≥ 9.

Hence, we have proved that k = 9.



Alternative solutions: The number n above is well chosen, but there are infinitely
many other examples that are good for proving the lower bound k ≥ 9. Let me sketch
the main idea: Suppose n can be represented by simple numbers, first adding p simple
numbers and the subtracting further m numbers. Suppose p+m ≤ 9. Write the decimal
representations: n =

∑r

i=0
ai10i, let the sum of positively occurring simple numbers be∑r

i=0
pi10i and let the sum of negatively occurring simple numbers be

∑r

i=0
mi10i.

Then a0 ≡ p0 − m0 (mod 10) and for s ∈ N, 0 < s ≤ r, we have either as ≡ ps − ms

(mod 10) or as ≡ ps −ms − 1 (mod 10). A case analysis shows for, say, n = 123456789
or n = 987654321, that p + m = 9.


