The 22nd Nordic Mathematical Contest

31 March 2008
Solutions

Time allowed is 4 hours. Each problem is worth 5 points. The only permitted
aids are writing and drawing materials.

Problem 1

Determine all real numbers A, B and C such that there exists a real function
f that satisfies
flx+ fly)) = Az + By + C

for all real x and y.

Solution. Let A, B and C be real numbers and f a function such that
flx+ f(y)) = Az + By + C for all z and y.
Let z be a real number and set = z — f(0) and y = 0. Then

f(2) = f(z=f0)+ f(0)) = A(z = f(0)) + B- 0+ C = Az — Af(0) + C,

so there are numbers a and b such that f(z) = az + b for all z. Now
flx+ f(y)) = ax +a*y + (a+ 1)b, and (A, B,C) = (a,a?, (a + 1)b), where a
and b are arbitrary real numbers, that is, (4, B, C) = (a, a?, c), where a # —1
and c are arbitrary, or (A, B,C) = (—1,1,0).

Problem 2

Assume that n > 3 people with different names sit around a round table. We
call any unordered pair of them, say M and N, dominating, if

(i) M and N do not sit on adjacent seats, and

(ii) on one (or both) of the arcs connecting M and N along the table edge,
all people have names that come alphabetically after the names of M
and N.

Determine the minimal number of dominating pairs.



Solution. We will show by induction that the number of dominating pairs
(hence also the minimal number of dominating pairs) is n — 3 for n > 3.

If n = 3, all pairs of people sit on adjacent seats, so there are no domin-
ating pairs. Assume that the number of dominating pairs is n — 3 for some
n > 3. If there are n + 1 people around the table, let the person whose name
is alphabetically last leave the table. The two people sitting next to that
person, who formed a dominating pair, no longer do. On the other hand,
any other dominating pair remains a dominating pair in the new configura-
tion of n people, and any dominating pair in the new configuration was also
a dominating pair in the old. The number of dominating pairs in the new
configuration is n — 3, so the number in the old was (n + 1) — 3.

Problem 3

Let ABC be a triangle and let D and E be points on BC and CA, respectively,
such that AD and BE are angle bisectors of ABC. Let F' and G be points
on the circumcircle of ABC such that AF and DFE are parallel and FG and
BC' are parallel. Show that

AG  AB+ AC
BG  AB + BC’

Solution. Let AB = ¢, BC' = a and
CA = b. Then it follows from the angle
bisector theorem that CD = ab/(b+ c).

(The angle bisector theorem can be
proved by letting A" be the intersection
point of the line C'A and the line through
B parallel with the bisector AD (dashed
lines). Then the angles BAD, ABA’', CAD
and CA’B are equal, so the triangle A’AB
is isosceles, and the equality follows from .
the similarity of the triangles ACD and e
A'CB.) T

Similarly, CE = ab/(a + ¢), so 4
CE/CD = (b+c¢)/(a+c). The angles
ABG, AFG and EDC are equal, and so are AGB and ACB, and consequently,
the triangles CED and GAB are similar. The conclusion follows.

(If, by adding an additional assumption, we make ABCG a convex quad-
rilateral, we can use Ptolemy’s theorem to get the more interesting result

that GA = GB + GC.)




Problem 4

The difference between the cubes of two consecutive positive integers is a
square n?, where n is a positive integer. Show that n is the sum of two
squares.

Solution. Assume that (m + 1)> — m® = n? Rearranging we get

3(2m +1)*> = (2n + 1)(2n — 1). Since 2n + 1 and 2n — 1 are relatively prime
(if they had a common divisor, it would have divided the difference, which is
2, but they are both odd), one of them is a square (of an odd integer, since
it is odd) and the other divided by 3 is a square.

An odd number squared minus 1 is divisible by 4 since (2t + 1)* — 1 =
4(t* +t). From the first equation we see that n is odd, say n = 2k + 1. Then
2n + 1 = 4k + 3, so the square must be 2n — 1, say 2n — 1 = (2t + 1)
Rearrangement yields n = % + (¢ + 1)%

An example: 8 — 73 = (2% + 32)%



