
14th Nordic Mathematical Contest

Solutions

Problem 1. Set x = the number of sums with 3 different integers, y = the numbers of
sums with 2 different integers. Consider a sequence of 3999 numbered boxes where every
odd-numbered box contains a red ball. Every placement of blue balls in any two of the even-

numbered boxes produces a division of 2000 in three parts. There are

(
1999

2

)
= 999 ·1999

ways of placing the two balls. Now every division of 2000 in three parts of different size
is produced by 3! = 6 different placements, and every division having two equal parts
is produced by 3 different placements. So 6x + 3y = 1999 · 999. But y = 999, since
the two equal parts can assume any size from 1 to 999. Solving, we get x = 998 · 333,
x+ y = 1001 · 333 = 333333.

Problem 2. Assume Pn originally has m coins, Pn−1 m + 1 coins, . . . , P1 m + n − 1
coins. In every move, a person receives k coins and gives k+1 coins, so in total his fortune
diminishes by one coin. After the first round, when Pn has left n coins to P1, Pn has m−1
coins, Pn−1 has m coins, etc., after two rounds Pn has m− 2 coins, Pn−1 has m− 1 coins,
etc. We can continue like this for m rounds, and after that Pn has no money, Pn−1 has
one coin etc. Now in round m + 1 every person who has money can receive money and
give away money as before, except Pn who was bankrupt. He receives n(m+ 1)− 1 coins
from Pn−1, but cannot give n(m + 1) coins away. In this situation Pn−1 has one coin,
and P1 has n − 2 coins. The only pair of neighbors where one player can have 5 times
as many coins as the other is (P1, Pn). Because n − 2 < n(m + 1) − 1, we must have
5(n − 2) = n(m + 1) − 1 or n(4 −m) = 9. Since n > 1, either n = 3, m = 1 or n = 9,
m = 3. Both alternatives work: in the first case, the number of coins is 3 + 2 + 1 = 6, in
the second, 11 + 10 + · · ·+ 3 = 63.

Problem 3, solution 1. Consider triangles AOE and AOD. They have two equal
sides, and equal angles opposite to one pair of equal sides. Then either AOE and AOD
are congruent or 6 AEO = 180◦ − 6 ADO. In the first case, 6 BEO = 6 CDO, and the
triangles EBO and DCO are congruent. Altogether, then, AB = AC. In the second
case, denote the angles at A, B, and C by 2α, 2β, and 2γ, respectively, and 6 AEO by δ.
Using the theorem of the adjacent angle in a triangle,we get 6 BOE = 6 DOC = β + γ,
δ = 2β + γ, 180◦ − δ = β + 2γ. Adding these,we have 3(β + γ) = 180◦, β + γ = 60◦.
Combining this with 2(α+ β + γ) = 180◦, we get 2α = 60◦.

Problem 3, solution 2. Let β, γ be as above. Using the sine theorem in 4BEO and
4CDO, we obtain

OE

sinβ
=

OB

sin(180◦ − 2β − γ)
,

OD

sin γ
=

OC

sin(180◦ − β − 2γ)
.

These combine to
OB

OC
=

sin(2β + γ) sin γ

sin(β + 2γ) sinβ
.



Using the theorem of sines to 4BOC, we obtain

OB

OC
=

sin γ

sinβ
.

So we must have sin(β + 2γ) = sin(2β + γ). So either β + 2γ = 2β + γ or β + 2γ =
180◦− 2β−γ. The first equation implies β = γ, or the isosceles case, while the second one
gives β + γ = 60◦, which easily leads to 6 BAC = 60◦.

Problem 4. Assuming 0 ≤ x < y < z ≤ 1 and y − x = z − y, we have

f(z)− f(y) ≤ 2f(y)− 2f(x)

f(y)− f(x) ≤ 2f(z)− 2f(z)− f(y),

or
2

3
f(x) +

1

3
f(z) ≤ f(y) ≤ 1

3
f(x) +

2

3
f(z). (1)

Denote f
(
1
3

)
by a and f

(
2
3

)
by b. Apply (1) with x = 0, y =

1

3
, z =

2

3
, and x =

1

3
, y =

2

3
,

and z = 1, to obtain
1

3
b ≤ a ≤ 2

3
b

2

3
a+

1

3
≤ b ≤ 1

3
a+

2

3
.

Eliminating b, we have
1

3

(
2

3
a+

1

3

)
≤ a ≤ 2

3

(
1

3
a+

2

3

)
,

fron which one solves for a to obtain
1

7
≤ a ≤ 4

7
. – In fact, the bounds cannot be reached;

one can show that the sharp bounds for f( 1
3 ) are

4

27
and

76

135
.


