(1) For 1 < k < 4 we have

2000 — k = £(2005 — k) = f(f(2010 — k))
= f(1999 — k) = f(f(2004 — k))
= (1993 — k).

In particular we have 1999 = f(1998) = f(1992) = f(2004). Now 1995 =
£(2000) = F(£(2005)) = £(1994). Also f(1993) = f(f(2004)) = f(1999) =
F(£(2010)) = £(2005) = 2000 so in fact 2000 — k = f(1999 — k) for k =
0,1,...,5, and 2000 — k = f(1993 — k) for k = 0,1,...4. We claim that
f(6n+1—k) = 2000 — k for n < 333 and 0 < k < 5. By what has been
said, this is true for n = 333, n = 332. Assuming it is true forn =m+2 we
get f(6m +1—k)) = f(f(6bm +12—%k)) = f(f(6(m +2) +1— (k+1)) =
£(1999 — k) = 2000 — k. So f(n) = 1999 is true for every n = 6m < 2004,
that is all n € {0,6,12,...,2004}.

(2) It is easy to give an example of such a heptagon with two angles of 120°.
We now show that a third angle of that size cannot occur.

Consider af cylic heptagon ABCDEFG. If the angles at two neighbouring
vertices, say, B and C, are equal, then the sides AB and CD are symmetric
with respect to the perpendicular bisector of segments BC. This collides
with the condition that no sides have equal lengths.

All that remains is to exclude the virtual possibility of /B = /D = /F =
120° (up to a shift of labelling). Assume this is the case. Let O be the
circumcenter. Then the concave angle COA is equal to 240°, giving the
convex angle COA equal to 120°. Analogously, ZCOE = 120° and /EOG =
120°. But that leaves no room for the angle GOA! Contradiction ends the
proof.

(3) If ged(a, b) = d > 1 then starting at the origin only lattice points (z,y)
where both z and y are divisible by d can be reached so a necessary condition
is

ged(a, b) = 1. (1)



Also note that if @ + b is even, then starting at the origin only lattice points
(z,y) with z + y even can be reached (that is, coloring the lattice points
black and white like on a regular chess board, either only black lattice points
can be reached or only white.) Hence another necessary condition is

a+b=1 ‘(mod2). (2)
We now show that conditions (1) and (2) together are sufficient:

We may assume a, b > 1 since the only pairs (a, b) with ab =10 satisfying (1)
and (2) are (1,0) and (0,1). By (1) there are positive integers 7 and s such
that ra — sb =1 or sb—ra = 1, say ra — sb = 1. By this we can construct
an allowed (a, b)-knight-walk from (z,y) as follows

(z,y) +r(a,b) +r(a,—b) = (z + 2ra,y)

to the lattice point (z + 2ra,y) where each step is represented by a “+” in
the above display (2r steps alltogether.) From this lattice point we construct
likewise an allowed (a, b)-knight-walk

(z + 2ra,y) + s(—b,a) + s(—=b,—a) ={z + 2ra — 2sb,y)

to the point (z + 2ra — 2sb,y) = (z + 2,y). In the same way we can use
allowed (a, b)-knight-walks to get from (z,y) to any of the four lattice points
(z & 2,y) or (z,y = 2). Hence starting at the origin, all lattice points with
both coordinates even can be reached.

By (2) one of the numbers a and b is even the other odd, say a = 2a+ 1 and
b = 23. Hence an allowed (a, b)-knight-walk can take us from (z,y) to

(z,y) + (a,b) + (22, —28) = (z + 1,9)

and in the same way we can get from (z,y) to any of the four lattice points
(z +1,y) or (z,y £ 1). Hence any lattice point can be reached by an (a, b)-
knight-walk in this case.



(4) The inequality can clearly be rewritten as follows:
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Dividing both the numerator and denominator of the right hand side by
% 4+ -+ 51: we get that the inequality is equivalent to

1 et 1 < n (1)
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Consider now the function f(z) = = 1— g2 from the set of positive real

numbers to itself. We will show that fis strlctly concave by showing that
g(x) = 135 is strictly convex: For distinct positive real numbers z and y and
arealt E]O 1[ we have that the inequality g(tz+(1—1)y) < tg(z)+(1—1t)g(y)
is equivalent to t>(y — z)? < (y — z)? which is valid since ¢ €]0;1[. Hence
f(z) is a strictly concave function which therefore satisfies

n n
with equality if and only if 1 = --- = z, (a special case of Jensens inequal-
ity!) Putting each z; = a; ! into (2) gives us (1) which proves the inequality,
and equality holds if and only if a; = --- = a,.
REMARK: Knowing that
tf(z) + (1 -t)f(y) < fltz + (1 - t)y) (3)

for all positive real numbers z and y and ¢ € [0; 1] with equality if and only
if z =y ort € {0,1}, we can prove (2) by induction on n:



For n = 1 there is nothing to prove since both sides of (2) are equal to f (z1).
Assuming validity for n we get that

n (f(I] )+~,-1'+f(¢n)) +f(z‘n+1)

@)+ fzny1)
n+1 n+1
< nf (BE2) 4 e )
— n+1
= o f (B 4 w1 f (Tng1)
with equality throughout if and onlyifz) =-.. = z,. Now putting ¢ = g
T = UtAon gng 4 = Tny1 into (3) we get (2) for n + 1, where equality
Py y + g
holds throughout if and only if ) = ... = z,, and ﬂ%& = Zp41, that is

221:-'-=:I:n=$n+1.



