12th Nordic Mathematical Contest ## Thursday April 2nd, 1998 ### **English version** Time allowed: 4 hours. A maximum of 5 points scored per problem. #### Problem 1 Find all functions f from the rational numbers to the rational numbers satisfying f(x+y) + f(x-y) = 2f(x) + 2f(y) for all rational x and y. #### Problem 2 Let C_1 and C_2 be two circles which intersect at points A and B. Let M_1 be the centre of C_1 and M_2 the centre of C_2 . Let P be a point on the linesegment AB distinct from A and B and so that $|AP| \neq |BP|$. Draw the line through P perpendicular to M_1P and denote by C and D its intersections with C_1 (see figure). Similarly (not drawn in the figure), draw the line through P perpendicular to M_2P and denote by E and F its intersections with C_2 . Prove that C, D, E, and F are the corners of a rectangle. #### Problem 3 - a) For which positive integers n does there exist a sequence x_1, x_2, \ldots, x_n containing each of the numbers $1, 2, \ldots, n$ exactly once and such that k divides $x_1 + x_2 + \cdots + x_k$ for $k = 1, 2, \ldots, n$? - **b)** Does there exist an infinite sequence x_1, x_2, x_3, \ldots containing every positive integer exactly once and such that for any positive integer k, k divides $x_1 + x_2 + \cdots + x_k$? #### Problem 4 Let n be a positive integer. Count the number of $k \in \{0, 1, 2, ..., n\}$ for which $\binom{n}{k}$ is odd. Prove that this number is a power of two: ie., on the form 2^p for some non-negative integer p.