Problem 4. Let *P* be a point inside the triangle *ABC*. The lines *AP*, *BP* and *CP* intersect the circumcircle Γ of triangle *ABC* again at the points *K*, *L* and *M* respectively. The tangent to Γ at *C* intersects the line *AB* at *S*. Suppose that SC = SP. Prove that MK = ML.

Problem 5. In each of six boxes $B_1, B_2, B_3, B_4, B_5, B_6$ there is initially one coin. There are two types of operation allowed:

- Type 1: Choose a nonempty box B_j with $1 \le j \le 5$. Remove one coin from B_j and add two coins to B_{j+1} .
- Type 2: Choose a nonempty box B_k with $1 \le k \le 4$. Remove one coin from B_k and exchange the contents of boxes B_{k+1} and B_{k+2} .

Determine whether there is a sequence of such operations that results in boxes B_1, B_2, B_3, B_4, B_5 being empty and box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^c} = a^{(b^c)}$.)

Problem 6. Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}$$

for all n > s. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_n = a_\ell + a_{n-\ell}$ for all $n \geq N$.