English version

Time allowed is 4 hours. Each problem is worth 7 points.
The only permitted aids are writing and drawing materials.

Problem 1

Let $T(a)$ be the sum of digits of a. For which positive integers R does there exist a positive integer n such that $\frac{T\left(n^{2}\right)}{T(n)}=R$?

Problem 2

Let \mathcal{Q}_{1} be a quadrilateral such that the midpoints of its sides lie on a circle. Prove that there exists a cyclic quadrilateral \mathcal{Q}_{2} with the same sidelengths as \mathcal{Q}_{1}, such that two of the angles in \mathcal{Q}_{2} are equal.

Problem 3

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x) f(y)+y)=f(x) y+f(y-x+1)
$$

for all $x, y \in \mathbb{R}$.

Problem 4

Alice and Bob are playing a game. First, Alice chooses a partition \mathcal{C} of the positive integers, i.e. a (not necessarily finite) set of subsets of the positive integers such that each positive integer is in exactly one of the sets in \mathcal{C}. Then Bob does the following operation a finite number of times. Choose a set $S \in \mathcal{C}$ not previously chosen, and let D be the set of all positive integers dividing at least one element in S. Then add the set $D \backslash S$ (possibly the empty set) to \mathcal{C}.
Bob wins if in any of the operations the set $D \backslash S$ is already in \mathcal{C}, otherwise, Alice wins. Determine which player has a winning strategy.

Note: $D \backslash S$ is the set of all elements in D that are not in S.

