Problem 1

-1p: does not check/mention that $f \equiv \frac{1}{2}$ is indeed a solution

(not additive)

+1 p : checks/mentions that $f \equiv \frac{1}{2}$ is a solution
+1 p : for $f(f(f(x)))=f(x)$
+2 p : shows that $f(1-x)=f(x)$
+3 p : for $f(1-x)=f(x)$ and checks that $f \equiv \frac{1}{2}$ is a solution
+3 p : for showing that $f \equiv \frac{1}{2}$ on V_{f}

Problem 2

$7-$

-0 p : missing the empty subsystem; this changes the answer, but makes the problem more difficult
$-1 \mathrm{p} / \mathrm{case}$: missing some case (e.g. the case when exactly one edge of the cycle connecting to v is in H)
-2 p : correct bijection, but missing proof that H^{\prime} (or some similar construction) is an even graph; for full mark it suffices to say that the difference for each edge is an even number

(not additive)
+0 p : special case(s); but cycle of arbitrary length n can give 1 p , if it is translated and solved correctly (see below)
+1 p : correct answer only, without any substantial argument
+1 p: correct translation into graph theory; e.g. claim that even system is disjoint union of cycles; only picture is not sufficient without naming cycles and/or even degrees
+2 p : claim that each town/edge belongs to exactly half the subsystems, equivalently correct size of $S(e)$
+3 p: wrong proof that each town/edge is in exactly half the subsystems (e.g. eliminating cycle containing the edge or other wrong constructions of a bijective map, or statement that each cycle belongs to exactly half the subsystems)

Problem 3

Correct answer (only) gives 1 p .
The remaining 6 points: 4 points for prime n and 2 points for non-prime n.
In each case half the points are given for correct strategy and the second half for a correct proof that the strategy works. Example of wrong strategy: choose $2 x$ if Anton have chosen x. This gives zero points out of 4 , because the strategy is wrong (Anton can choose 2 at the first step and 1 at the second).

For prime n a strategy consists of two choices: at each step (one point) and final (second point). Similarly for the proof.

For example, the proof that for non-prime n we can get zero should use that the number n is odd. Simply saying that one chooses n / d or $n-n / d$ gives only one point out of 2 , because it should be shown that these numbers are different. Choosing only one divisor d and claiming that the result will be zero $\bmod n$ gives 1 point (correct strategy, wrong proof). Claiming that the result is not 1 without mention of divisibility of both numbers (n and the power) also gives only one point.

Similarly for the prime case only choosing $n-a$ each time Anton chooses a without any attempt to say why this is possible (n is odd and $n-a$ cannot be chosen in the previous step) gives 1 out of 2 points for the strategy. But if something like pairing is mentioned it gives 2 points.

Citing Fermat/Euler theorem gives no points, the same for the remark that the power is either zero or ± 1 modulo prime. The statement that exactly half gives +1 (for prime) still gives zero points if it is not connected with some reasonable strategy.

Finitely many special cases give 0 points.
Infinitely many special cases as $p^{2}, p q$ can give one point (for the non-prime part).

Problem 4

-1p: for small flaws, e.g. in showing similarity

+2 p : for guessing that the point of intersection is the Miquel point of $B C E D$
+2 p : for guessing that the point of intersection lies on the circumscribed circle of triangle $A D E$

