The 25th Nordic Mathematical Contest
 Monday 4 April 2011
 English version

The time allowed is 4 hours. Each problem is worth 5 points. The only aids permitted are writing and drawing tools.

Problem 1

When $a_{0}, a_{1}, \ldots, a_{1000}$ denote digits, can the sum of the 1001-digit numbers $a_{0} a_{1} \ldots a_{1000}$ and $a_{1000} a_{999} \ldots a_{0}$ have odd digits only?

Problem 2

In a triangle $A B C$ assume $A B=A C$, and let D and E be points on the extension of segment $B A$ beyond A and on the segment $B C$, respectively, such that the lines $C D$ and $A E$ are parallel. Prove $C D \geq \frac{4 h}{B C} C E$, where h is the height from A in triangle $A B C$. When does equality hold?

Problem 3

Find all functions f such that

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 y f(x)
$$

for all real numbers x and y.

Problem 4

Show that for any integer $n \geq 2$ the sum of the fractions $\frac{1}{a b}$, where a and b are relatively prime positive integers such that $a<b \leq n$ and $a+b>n$, equals $\frac{1}{2}$.
(Integers a and b are called relatively prime if the greatest common divisor of a and b is 1.)

