Solutions

Problem 1

When $a_{0}, a_{1}, \ldots, a_{1000}$ denote digits, can the sum of the 1001 -digit numbers $a_{0} a_{1} \ldots a_{1000}$ and $a_{1000} a_{999} \ldots a_{0}$ have odd digits only?

Solution. The answer is no.
The following diagram illustrates the calculation of the sum digit by digit.

	a_{0}	a_{1}	\ldots	a_{i}	\ldots	a_{500}	\ldots	a_{1000-i}	\ldots	a_{998}	a_{999}	a_{1000}
	a_{1000}	a_{999}	\ldots	a_{1000-i}	\ldots	a_{500}	\ldots	a_{i}	\ldots	a_{2}	a_{1}	a_{0}
s_{1001}	s_{1000}	s_{999}	\ldots	s_{1000-i}	\ldots	s_{500}	\ldots	s_{i}	\ldots	s_{2}	s_{1}	s_{0}

Thus s_{i} are the digits of the sum. The digit s_{1001} may be absent. We call column i the column in the diagram with the digit s_{i}.
Assume that s_{i} is odd for $i=0,1, \ldots, 1000$. By induction on i we prove that $a_{2 i}+a_{1000-2 i}$ is odd for $i=0,1, \ldots, 250$. This implies that $a_{2 \cdot 250}+a_{1000-2 \cdot 250}=2 a_{500}$ is odd, which is a contradiction. Here is the proof: Since s_{0} is odd, $a_{0}+a_{1000}$ is odd, so the statement is true for $i=0$. Assume that $a_{2 i}+a_{1000-2 i}$ is odd for some $i=0,1, \ldots, 249$. Since $s_{1000-2 i}$ is odd and $a_{2 i}+a_{1000-2 i}$ is odd, there is no carry in column $1000-2 i$, so $a_{2 i+1}+a_{1000-(2 i+1)} \leq 9$. But then because $s_{2 i+1}$ is odd and $a_{2 i+1}+a_{1000-(2 i+1)} \leq 9$, there is no carry in column $2 i+2$. Hence $a_{2 i+2}+a_{1000-(2 i+2)}$ is odd because $s_{2 i+2}$ is odd. This completes the induction step.

Problem 2

In a triangle $A B C$ assume $A B=A C$, and let D and E be points on the extension of segment $B A$ beyond A and on the segment $B C$, respectively, such that the lines $C D$ and $A E$ are parallel. Prove $C D \geq \frac{4 h}{B C} C E$, where h is the height from A in triangle $A B C$. When does equality hold?

Solution. From $A E \| C D$ we get $C D / A E=B C / B E$, whence

$$
\begin{equation*}
C D=\frac{A E \cdot B C}{B E \cdot C E} C E . \tag{1}
\end{equation*}
$$

Since h is the shortest distance of A from the line $B C$, we have $A E \geq h$ with equality when E is the foot of the height, which, due to $A B=A C$, is the midpoint of $B C$.
 Futhermore $B E \cdot C E \leq((B E+C E) / 2)^{2}=(B C / 2)^{2}$ with equality when $B E=C E$, which is equivalent to E being once more the midpoint of $B C$. Combining these results we get from (1) the requested inequality with equality when E is the midpoint of $B C$.

Problem 3

Find all functions f such that

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 y f(x)
$$

for all real numbers x and y.
Solution. Substituting $y=\left(x^{2}-f(x)\right) / 2$ yields $2\left(x^{2}-f(x)\right) f(x)=0$, so for each x either $f(x)=0$ or $f(x)=x^{2}$. If $f(x)=0$ one gets $f(y)=f\left(x^{2}-y\right)$. In particular $f(y)=f(-y)$. If $f(y) \neq 0$, the last but one equation can be written $y^{2}=\left(x^{2}-y\right)^{2}$. Now, due to $f(y)=f(-y)$, if $f(y) \neq 0$ also $f(-y) \neq 0$, so we have $y^{2}=\left(x^{2}+y\right)^{2}$ as well. Adding these equations gives $2 x^{4}=0$, or $x=0$. In conclusion, if $f(y) \neq 0$ for some y then $f(x)=0$ implies $x=0$. Thus either $f(x)=0$ for all x or $f(x)=x^{2}$ for all x. It is easily verified that both these functions satisfy the given equation.

Problem 4

Show that for any integer $n \geq 2$ the sum of the fractions $\frac{1}{a b}$, where a and b are relatively prime positive integers such that $a<b \leq n$ and $a+b>n$, equals $\frac{1}{2}$.
(Integers a and b are called relatively prime if the greatest common divisor of a and b is 1 .)

Solution. We prove this by induction. First observe that the statement holds for $n=2$ because $a=1$ and $b=2$ are the only numbers which satify the conditions. Next we show that increasing n by 1 does not change the sum, so it remains equal to $1 / 2$. To that end it suffices to show that the sum of the terms removed from the sum equals the sum of the new terms added. All the terms in the sum for $n-1$ remain in the sum for n except the fractions $1 / a b$ with a and b relatively prime, $0<a<b \leq n$ and $a+b=n$. On the other hand the new fractions added to the sum for n have the form $1 / a n$ with $0<a<n$. So it suffices to show

$$
\sum_{\substack{0<a<n / 2 \\ \operatorname{gcd}(a, n-a)=1}} \frac{1}{a(n-a)}=\sum_{\substack{0<a<n \\ \operatorname{gcd}(a, n)=1}} \frac{1}{a n} .
$$

Note that the terms in the sum on the right hand side can be grouped into pairs

$$
\frac{1}{a n}+\frac{1}{(n-a) n}=\frac{(n-a)+a}{a(n-a) n}=\frac{1}{a(n-a)}
$$

because $\operatorname{gcd}(a, n)=\operatorname{gcd}(n-a, n)$, so either both these terms are in the sum or none of them is. No term is left out because if n is even and greater than 2 then $\operatorname{gcd}(n / 2, n)=n / 2>1$. So the right hand side is given by

$$
\sum_{\substack{0<a<n \\ \operatorname{gcd}(a, n)=1}} \frac{1}{a n}=\sum_{\substack{0<a<n / 2 \\ \operatorname{gcd}(a, n)=1}} \frac{1}{a(n-a)}=\sum_{\substack{0<a<n / 2 \\ \operatorname{gcd}(a, n-a)=1}} \frac{1}{a(n-a)}
$$

which is what we had to prove.

