The 22nd Nordic Mathematical Contest

31 March 2008
 English version

Time allowed is 4 hours. Each problem is worth 5 points. The only permitted aids are writing and drawing materials.

Problem 1

Determine all real numbers A, B and C such that there exists a real function f that satisfies

$$
f(x+f(y))=A x+B y+C
$$

for all real x and y.

Problem 2

Assume that $n \geq 3$ people with different names sit around a round table. We call any unordered pair of them, say M and N, dominating, if
(i) M and N do not sit on adjacent seats, and
(ii) on one (or both) of the arcs connecting M and N along the table edge, all people have names that come alphabetically after the names of M and N.

Determine the minimal number of dominating pairs.

Problem 3

Let $A B C$ be a triangle and let D and E be points on $B C$ and $C A$, respectively, such that $A D$ and $B E$ are angle bisectors of $A B C$. Let F and G be points on the circumcircle of $A B C$ such that $A F$ and $D E$ are parallel and $F G$ and $B C$ are parallel. Show that

$$
\frac{A G}{B G}=\frac{A B+A C}{A B+B C}
$$

Problem 4

The difference between the cubes of two consecutive positive integers is a square n^{2}, where n is a positive integer. Show that n is the sum of two squares.

