$20^{\text {th }}$ Nordic Mathematical Contest

Thursday March 30, 2006
English version

Time allowed: 4 hours. Each problem is worth 5 points.

Problem 1. Let B and C be points on two fixed rays emanating from a point A such that $A B+A C$ is constant.
Prove that there exists a point $D \neq A$ such that the circumcircles of the triangels $A B C$ pass through D for every choice of B and C.

Problem 2. The real numbers x, y and z are not all equal and fulfill

$$
x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}=k
$$

Determine all possible values of k.

Problem 3. A sequence of positive integers $\left\{a_{n}\right\}$ is given by

$$
a_{0}=m \quad \text { and } \quad a_{n+1}=a_{n}^{5}+487 \text { for all } n \geq 0
$$

Determine all values of m for which the sequence contains as many square numbers as possible.

Problem 4. The squares of a 100×100 chessboard are painted with 100 different colours. Each square has only one colour and every colour is used exactly 100 times.
Show that there exists a row or a column on the chessboard in which at least 10 colours are used.

Only writing and drawing sets are allowed

