# $20^{\text {th }}$ Nordic Mathematical Contest 

Thursday March 30, 2006
English version

Time allowed: 4 hours. Each problem is worth 5 points.

Problem 1. Let $B$ and $C$ be points on two fixed rays emanating from a point $A$ such that $A B+A C$ is constant.
Prove that there exists a point $D \neq A$ such that the circumcircles of the triangels $A B C$ pass through $D$ for every choice of $B$ and $C$.

Problem 2. The real numbers $x, y$ and $z$ are not all equal and fulfill

$$
x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}=k
$$

Determine all possible values of $k$.

Problem 3. A sequence of positive integers $\left\{a_{n}\right\}$ is given by

$$
a_{0}=m \quad \text { and } \quad a_{n+1}=a_{n}^{5}+487 \text { for all } n \geq 0
$$

Determine all values of $m$ for which the sequence contains as many square numbers as possible.

Problem 4. The squares of a $100 \times 100$ chessboard are painted with 100 different colours. Each square has only one colour and every colour is used exactly 100 times.
Show that there exists a row or a column on the chessboard in which at least 10 colours are used.

Only writing and drawing sets are allowed

Solution 1. Let $B$ and $B_{1}$ be points on one of the rays emanating from $A$ and $C$ and $C_{1}$ be points on the other ray emanating from $A$. We have to prove that the circumcircles of the triangles $A B C$ and $A B_{1} C_{1}$ pass the same point $D$ regardless of the choice of $B_{1}$ and $C_{1}$ if the condition $A B+A C=A B_{1}+A C_{1}$ is fulfilled. To determine $D$ we make a special choice of $B_{1}$ and $C_{1}$. Let $B_{1}$ and $C_{1}$ be the reflection points of $C$ and $B$, respectively, by reflection in the bisector of $\angle B A C$. The circumcircle of triangle $A B_{1} C_{1}$ is the reflected circumcircle of the triangle $A B C$ and hence $D$ must be the intersection point $(\neq A)$ of the circumcircle of triangle $A B C$ and the bisector of $\angle B A C$.
Let $B_{1}$ and $C_{1}$ be another choice. We may assume $B_{1}$ is on the line segment $A B$. Then $C$ is on the line segment $A C_{1}$. From the condition $A B+A C=$ $A B_{1}+A C_{1}$ we get $C C_{1}=B B_{1}$. Since $A B C D$ is a quadrilateral inscribed in a circle and $A D$ bisects $\angle B A C$, then $B D=D C$ and $\angle C_{1} C D=\angle B_{1} B D$. So the triangles $B_{1} B D$ and $C_{1} C D$ are congruent. But then $\angle D B_{1} B=\angle D C_{1} C$. From this we conclude that the quadrilateral $A B_{1} D C_{1}$ is inscribed in a circle. So $D$ is on the circumcircle of triangle $A B_{1} C_{1}$.

Solution 2. From $x+\frac{1}{y}=k$ we get $\frac{1}{x}=\frac{y}{k y-1}$. Further from $y+\frac{1}{z}=k$ we get $z=\frac{1}{k-y}$. By putting these expressions in the equation $z+\frac{1}{x}=k$ we get

$$
\begin{aligned}
\frac{1}{k-y}+\frac{y}{k y-1}=k & \Leftrightarrow \\
k y-1+y(k-y)=k(k-y)(k y-1) & \Leftrightarrow \\
k^{3} y-k^{2}-k^{2} y^{2}+1-k y+y^{2}=0 & \Leftrightarrow \\
k y\left(k^{2}-1\right)-\left(k^{2}-1\right)-y^{2}\left(k^{2}-1\right)=0 & \Leftrightarrow \\
\left(k^{2}-1\right)\left(k y-1-y^{2}\right)=0 & \Leftrightarrow \\
k= \pm 1 \vee k y-1-y^{2}=0 & \Leftrightarrow \\
k= \pm 1 \vee k=y+\frac{1}{y} &
\end{aligned}
$$

If we combine $k=y+\frac{1}{y}$ with the given equations we get $x=y=z$ and that is against the assumption. Hence $k= \pm 1$.
These values of $k$ are possible. Example: $x=2, y=-1, z=\frac{1}{2}$ shows that $k=1$ is possible. By changing signs on these $x, y$ and $z$ we also change sign on $k$.

Solution 3. $m=9$.
Notice that if $a_{n}$ is a square number, then $a_{n} \equiv 0 \vee a_{n} \equiv 1 \bmod 4$.
If $a_{k} \equiv 0 \bmod 4$, then $a_{k+i} \equiv 3 \bmod 4$ when $i$ is an odd positive integer and $a_{k+i} \equiv 2 \bmod 4$ when $i$ is an even positive integer. Hence $a_{n}$ is not a square number when the index is greater than $k$.
If $a_{k} \equiv 1 \bmod 4$, then $a_{k+1} \equiv 0 \bmod 4$. Hence $a_{n}$ is not a square number when the index is greater than $k+1$.
This shows that the sequence at most contains two square numbers.
Suppose that the sequence contains two square numbers $a_{k}$ and $a_{k+1}$, then $a_{k}=s^{2}$, where $s$ is odd, and $a_{k+1}=s^{10}+487=t^{2}$. Let $t=s^{5}+r$, then $t^{2}=\left(s^{5}+r\right)^{2}=s^{10}+2 s^{5} r+r^{2}$, hence $2 s^{5} r+r^{2}=487$.
If $s=1$, then $r(2+r)=487$ which is impossible. If $s=3$, then $486 r+r^{2}=$ 487, and hence $r=1$. If $s>3$, the equation has no solutions. Hence $a_{k}=9$. Since $a_{n}>487$ when $n>0$, then $m=a_{0}=9$ (if $a_{0}=9$ then the above calculations indeed show that $a_{1}=9^{5}+487=244^{2}$ is a square number).

Solution 4. Let $R_{i}$ and $C_{i}$ be the number of colours used to colour the squares in row $i$ and column $i$, respectively, where $i=1, \ldots, 100$. We want to show that at least one of the integers $R_{1} \ldots, R_{100}, C_{1}, \ldots, C_{100}$ is greater than or equal to 10 .
Consider the sum $\sum_{i=1}^{100} R_{i}+\sum_{i=1}^{100} C_{i}$. This sum is equal to $\sum_{i=1}^{100} r_{i}+\sum_{i=1}^{100} c_{i}$, where $r_{i}=$ the number of rows containing the colour $i$ and $c_{i}=$ the number of columns containing the colour $i$.
According to the A-G-inequality we have $r_{i}+c_{i} \geq 2 \sqrt{r_{i} c_{i}}$. The colour $i$ occurs not more than $c_{i}$ times in each row, where it occurs, i.e it occurs not more than $r_{i} c_{i}$ times on the chessboard. Hence $r_{i} c_{i} \geq 100$.

$$
\begin{aligned}
\sum_{i=1}^{100} R_{i}+\sum_{i=1}^{100} C_{i} & =\sum_{i=1}^{100} r_{i}+\sum_{i=1}^{100} c_{i}=\sum_{i=1}^{100}\left(r_{i}+c_{i}\right) \\
& \geq \sum_{i=1}^{100} 2 \sqrt{r_{i} c_{i}} \geq \sum_{i=1}^{100} 2 \sqrt{100}=2000
\end{aligned}
$$

From this we conclude that at least one of the integers $R_{1} \ldots, R_{100}, C_{1}, \ldots, C_{100}$ is greater than or equal to 10 .

