19th Nordic Mathematical Contest - 2005

Proposed Solutions

1. Let

$$
a=\sum_{k=0}^{n} a_{k} 10^{k}, \quad 0 \leq a_{k} \leq 9, \text { for } 0 \leq k \leq n-1,1 \leq a_{n} \leq 9 .
$$

Set

$$
f(a)=\prod_{k=0}^{n} a_{k}
$$

Since

$$
f(a)=\frac{25}{8} a-211 \geq 0,
$$

$a \geq \frac{8}{25} \cdot 211=\frac{1688}{25}>66$. Also, $f(a)$ is an integer, and $\operatorname{gcf}(8,25)=1$, so $8 \mid a$. On the other hand,

$$
f(a) \leq 9^{n-1} a_{n} \leq 10^{n} a_{n} \leq a .
$$

So

$$
\frac{25}{8} a-211 \leq a
$$

or $a \leq \frac{8}{17} \cdot 211=\frac{1688}{17}<100$. The only multiples of 8 between 66 and 100 are $72,80,88$, and 96. Now $25 \cdot 9-211=17=7 \cdot 2,25 \cdot 10-211=39 \neq 8 \cdot 0,25 \cdot 11-211=64=8 \cdot 8$, and $25 \cdot 12-211=89 \neq 9 \cdot 6$. So 72 and 88 are the numbers asked for.
2. 1st Solution. The inequality is equivalent to
$2\left(a^{2}(a+b)(a+c)+b^{2}(b+c)(b+a)+c^{2}(c+a)(c+b)\right) \geq(a+b+c)(a+b)(b+c)(c+a)$.
The left hand side can be factored as $2(a+b+c)\left(a^{3}+b^{3}+c^{3}+a b c\right)$. Because $a+b+c$ is positive, the inequality is equivalent to

$$
2\left(a^{3}+b^{3}+c^{3}+a b c\right) \geq(a+b)(b+c)(c+a) .
$$

After expanding the right hand side and subtracting $2 a b c$, we get the inequality

$$
2\left(a^{3}+b^{3}+c^{3}\right) \geq\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(a^{2} c+b^{2} a+c^{2} b\right),
$$

still equivalent to the original one. But we now have two instances of the well-known inequality $x^{3}+y^{3}+z^{3} \geq x^{2} y+y^{2} z+z^{2} x$ or $x^{2}(x-y)+y^{2}(y-z)+z^{2}(z-x) \geq 0$. [Proof: We may assume $x \geq y, x \geq z$. If $y \geq z$, write $z-x=z-y+y-z$ to obtain the equivalent and true inequality $\left(y^{2}-z^{2}\right)(y-z)+\left(x^{2}-z^{2}\right)(x-y) \geq 0$, if $z \geq y$, similarly write $x-y=x-z+z-y$, and get $\left(x^{2}-z^{2}\right)(x-z)+\left(x^{2}-y^{2}\right)(z-y) \geq 0$.]
$2 n d$ Solution. The original inequality is symmetric in a, b, c. So we may assume $a \geq b \geq c$. So

$$
\frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b}
$$

The Chebyshev inequality gives

$$
\frac{2 a^{2}}{b+c}+\frac{2 b^{2}}{c+a}+\frac{2 c^{2}}{a+b} \geq \frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)
$$

The power mean inequality gives

$$
\frac{a^{2}+b^{2}+c^{2}}{3} \geq\left(\frac{a+b+c}{3}\right)^{2}
$$

So

$$
\frac{2 a^{2}}{b+c}+\frac{2 b^{2}}{c+a}+\frac{2 c^{2}}{a+b} \geq \frac{2}{9}(a+b+c)^{2}\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) .
$$

To complete the proof, we have to show that

$$
2(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) \geq 9
$$

But this is equivalent to the harmonic-arithmetic mean inequality

$$
\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \leq \frac{x+y+z}{3}
$$

with $x=a+b, y=b+c, z=c+a$.
3. Assume the number of girls to be g and the number of boys b. Call a position clockwise fairly strong, if, counting clockwise, the number of girls always exceeds the number of boys. No girl immediately followed by a boy has a fairly strong position. But no pair consisting of a girl and a boy following her has any effect on the fairly strongness of the other positions. So we may remove all such pairs. so we are left with at least $g-b$ girls, all in a clockwise fairly strong position. A similar count of counterclockwise fairly strong positions can be given, yielding at least $g-b$ girls in such a position. Now a sufficient condition for the existence of a girl in a strong position is that the sets consisting of the girls in clockwise and counterclockwise fairly strong position is nonempty. This is certainly true if $2(g-b)>g$, or $g>2 b$. With the numbers in the problem, this is true.
4. Draw the tangent CH to \mathcal{C}_{2} at C. By the theorem of the angle between a tangent and chord, the angles $A B H$ and $A C H$ both equal the angle at A between $B A$ and the common tangent of the circles at A. But this means that the angles $A B H$ and $A C H$ are equal, and $C H \| B E$. But this means that C is the midpoint of the arc $D E$. This again implies the equality of the angles $C E B$ and $B A E$, as well as $C E=C D$. So the triangles $A E C, C E B$, having also a common angle $E C B$, are similar. So

$$
\frac{C B}{C E}=\frac{C E}{A C}
$$

and $C B \cdot A C=C E^{2}=C D^{2}$. But by the power of a point theorem, $C B \cdot C A=C G^{2}=C F^{2}$. We have in fact proved $C D=C E=C F=C G$, so the four points are indeed concyclic.

