Solutions to the

2004 Nordic Mathematical Contest

Problem 1

Let r be the number of balls in the red bowl, b be the number of balls in the blue
bowl and y be the number of balls in the yellow bowl. Because the mean of the 5
smallest integers is 3 we have b < 5. We have

r+b+y = 27
15r +3b+ 18y = 27-14

From this we get

dr+5y = 99
b = 2T—r—y
b < 5

The only positive solutions are (r,b,y) = (11,5,11),(16,4,7), (21,3, 3)
The 3 values of r are all possible.

r=11: Blue:{1,2,3,4,5} Red:{10,11,---,18,19,20}

r=16: Blue:{1,2,4,5} Red: {78, --,14,16,17,--- ,23}
r=21: Blue:{2,3,4} Red : {5,6,---,25}

Problem 2

A sequence {a;} is arithmetic if ayy1 — ay = d for all k, where d is some constant,
so a, = dk + ag. Notice that the arithmetic sequence is constant modulo its fixed
increase, ay = ag (mod d) for all k. So to find an increasing arithmetic sequence
with no term in common with the Fibonacci sequence, it suffices to find integers
d > 0 and ag such that f, is never equivalent to ay modulo d.

Calculate the Fibonacci sequence modulo 8:
0,1,1,2,3,5,0,5,5,2,7,1,0,1,...

We have again reached: 0,1,... and because of the relation f,.o = foi1 + fau
the sequence now repeats itself modulo 8. Notice that 4 does not appear, so
the arithmetic sequence a;, = 8k + 4 has no term in common with the Fibonacci
sequence.



Problem 3

Let M}, = max; xj;, and my = min; x;. It is clear that M}, is a non-increasing and
my, a non-decreasing sequence. Also, My, = My, only if zj, = x4, = M, for
some j. If exactly p "adjacent" z;;’s equal My, then only p — 1 adjacent z; 11’s
equal Mj. Eventually we reach a step, where My,1 < Mj. Similarly, mg,q > my
at some stage. Now if all the numbers in all the sequences are integers, so must
be the maxima and minima. After a finite number of steps the maximum and
minimum are equal, and so are all the numbers. We then have for some k

Tig + Lok = Top + XT3 =+ = Tk + T1k-

If n is odd, this gives xy;, = T3 = -+ = Tpp = Top, = -+ = Typ_14. Working
backwards, the numbers in the starting sequence have to be equal.

But if n is even, then the sequence 0,2,0,2,...,0,2 is a counterexample because
in next step all the numbers will be equal to 1 and we never get a number that is
not an integer.

Remark: It can be shown that the only counterexamples are sequences of the
type a,b,a,b,...,a,b with a = b (mod 2):

In the argument above, if n is even, we get

Tip =Tk =+ = Tp-1p = @ and  Top = Ty = -+ = T = b.

1 1
But if £ > 1, then Tk — §($1,k_1 + xQ’k_1)7 To — 5(1’2719_1 + $37k_1) etc., and

n 1
561 =Tyt X3+ Tk = 5(951,1@71 + Top—1++ Tog-1),

n 1
50 = Top + g + -+ Ty = 5( 2k—1 T T3k—1+ -+ Tpp_1+ T1r_1,

so a = b. Therefore it is only possible that a # b when k = 1 and clearly to get
integers in step k + 1 we must have a = b (mod 2).

Alternate solution for the odd case: Assume that xg, ..., . are integers for
some k > 1. Then x; ;1 = %4141 (mod 2) for all ¢, and if k£ > 2

Tik—2 + Tit1,k—2 = Tit+1,k—2 + Tit2,k—2 (mod 4) for all 7.

Since n is odd, it follows that x; 52 = ;4142 (mod 4) for all . By induction it
follows that x;)_; = z;114; (mod 27) for all ¢ and all j < k. Hence if ;4 is an
integer for all 7 and k, then z;; = z;,1; (mod 27) for all ¢ and j, thus they must
all be equal.



Problem 4

Let A, B and C be the vertices of the triangle and call the angles at the vertices
a, [ and 7, respectively. Let O be the centre of the circumcircle, so |OA| =
|OB| = |OC| = R. Draw the perpendiculars from O to each of the sides. This
gives us three pairs of right angled triangles, from which we get that a = 2R sin «,
b= 2Rsin and ¢ = 2R sin~. Using this the inequality can be transformed to

sin a + sin 8 + sin v > 4sin asin Fsin 7.

Using the GM-AM inequality we get

sin a + sin 3 + sin 7)3

4sinasinﬁsin’y§4( 5

We will show that

sin a + sin 3 + sin 7y < V3
3 - 27

which is equivalent to

4(sina+sinﬁ+sin7

3 )Sgsina—i—sinﬁ—l—sin'y,

which then will give the wanted inequality.

We find that
sin @ +sin f+siny = ZSina;BCOSagﬂ—l—Qsina;ﬁcosa;ﬁ
< 2sin (1 4 cos 25

The function f(t) = 2sin ¢(1 + cos t) = 2sin ¢ + sin 2¢ has the derivative f'(t) =
2cos t 4 2cos 2t. The equation f’(t) = 0 has the unique solution ¢, = % in the

interval (0, 7); comparing f(0) =0, f(7) =0 and f(3) = %?: gives that f has its
a—;ﬂ = %, with equality for a = g = %.

largest value in the interval for ¢ty = 3

Remark: Instead of using derivatives it is possible to prove

3v/3

sina—l—sinﬁquinygT

using Jensen’s inequality because sin(x) is concave for 0° < z < 180°:

s S”; fisiny sin( ) = sin(60°) = -

atfB+y V3
3



Alternate solution: Using F = sr = $(a+ b+ c)r and F = ¢ we get

11 1 25 1

%—i_bc—i_ca—abc_%
so the problem can be solved using the fact that 2r < R. But this follows from

Euler’s formula |OI]? = R(R — 2r) > 0, where O is the circumcentre and I is the
incentre



