
Solutions to the

2004 Nordic Mathematical Contest

Problem 1

Let r be the number of balls in the red bowl, b be the number of balls in the blue
bowl and y be the number of balls in the yellow bowl. Because the mean of the 5
smallest integers is 3 we have b ≤ 5. We have

r + b + y = 27

15r + 3b + 18y = 27 · 14

From this we get

4r + 5y = 99

b = 27− r − y

b ≤ 5

The only positive solutions are (r, b, y) = (11, 5, 11), (16, 4, 7), (21, 3, 3)
The 3 values of r are all possible.
r = 11 : Blue : {1, 2, 3, 4, 5} Red : {10, 11, · · · , 18, 19, 20}
r = 16 : Blue : {1, 2, 4, 5} Red : {7, 8, · · · , 14, 16, 17, · · · , 23}
r = 21 : Blue : {2, 3, 4} Red : {5, 6, · · · , 25}

Problem 2

A sequence {ak} is arithmetic if ak+1 − ak = d for all k, where d is some constant,
so ak = dk + a0. Notice that the arithmetic sequence is constant modulo its �xed
increase, ak ≡ a0 (mod d) for all k. So to �nd an increasing arithmetic sequence
with no term in common with the Fibonacci sequence, it su�ces to �nd integers
d > 0 and a0 such that fn is never equivalent to a0 modulo d.

Calculate the Fibonacci sequence modulo 8:

0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, . . .

We have again reached: 0, 1, . . . and because of the relation fn+2 = fn+1 + fn

the sequence now repeats itself modulo 8. Notice that 4 does not appear, so
the arithmetic sequence ak = 8k + 4 has no term in common with the Fibonacci
sequence.



Problem 3

Let Mk = maxj xjk and mk = minj xjk. It is clear that Mk is a non-increasing and
mk a non-decreasing sequence. Also, Mk+1 = Mk only if xjk = xj+1,k = Mk for
some j. If exactly p "adjacent" xik's equal Mk, then only p − 1 adjacent xi,k+1's
equal Mk. Eventually we reach a step, where Mk+1 < Mk. Similarly, mk+1 > mk

at some stage. Now if all the numbers in all the sequences are integers, so must
be the maxima and minima. After a �nite number of steps the maximum and
minimum are equal, and so are all the numbers. We then have for some k

x1k + x2k = x2k + x3k = · · · = xnk + x1k.

If n is odd, this gives x1k = x3k = · · · = xnk = x2k = · · · = xn−1,k. Working
backwards, the numbers in the starting sequence have to be equal.

But if n is even, then the sequence 0, 2, 0, 2, . . . , 0, 2 is a counterexample because
in next step all the numbers will be equal to 1 and we never get a number that is
not an integer.

Remark: It can be shown that the only counterexamples are sequences of the
type a, b, a, b, . . . , a, b with a ≡ b (mod 2):

In the argument above, if n is even, we get

x1k = x3k = · · · = xn−1,k = a and x2k = x4k = · · · = xnk = b.

But if k > 1, then x1k =
1

2
(x1,k−1 + x2,k−1), x2k =

1

2
(x2,k−1 + x3,k−1) etc., and

n

2
a = x1k + x3k + · · ·+ xn−1,k =

1

2
(x1,k−1 + x2,k−1 + · · ·+ xn,k−1),

n

2
b = x2k + x4k + · · ·+ xnk =

1

2
(x2,k−1 + x3,k−1 + · · ·+ xn,k−1 + x1,k−1,

so a = b. Therefore it is only possible that a 6= b when k = 1 and clearly to get
integers in step k + 1 we must have a ≡ b (mod 2).

Alternate solution for the odd case: Assume that x1k, ..., xnk are integers for
some k > 1. Then xi,k−1 ≡ xi+1,k−1 (mod 2) for all i, and if k > 2

xi,k−2 + xi+1,k−2 ≡ xi+1,k−2 + xi+2,k−2 (mod 4) for all i.

Since n is odd, it follows that xi,k−2 ≡ xi+1,k−2 (mod 4) for all i. By induction it
follows that xi,k−j ≡ xi+1,k−j (mod 2j) for all i and all j < k. Hence if xi,k is an
integer for all i and k, then xi,1 = xi+1,1 (mod 2j) for all i and j, thus they must
all be equal.



Problem 4

Let A, B and C be the vertices of the triangle and call the angles at the vertices
α, β and γ, respectively. Let O be the centre of the circumcircle, so |OA| =
|OB| = |OC| = R. Draw the perpendiculars from O to each of the sides. This
gives us three pairs of right angled triangles, from which we get that a = 2R sin α,
b = 2R sin β and c = 2R sin γ. Using this the inequality can be transformed to

sin α + sin β + sin γ ≥ 4 sin α sin β sin γ.

Using the GM-AM inequality we get

4 sin α sin β sin γ ≤ 4
(sin α + sin β + sin γ

3

)3
.

We will show that
sin α + sin β + sin γ

3
≤
√

3

2
,

which is equivalent to

4
(sin α + sin β + sin γ

3

)3 ≤ sin α + sin β + sin γ,

which then will give the wanted inequality.

We �nd that

sin α + sin β + sin γ = 2 sin
α + β

2
cos

α− β

2
+ 2 sin

α + β

2
cos

α + β

2

≤ 2 sin
α + β

2
(1 + cos

α + β

2
).

The function f(t) = 2 sin t(1 + cos t) = 2 sin t + sin 2t has the derivative f ′(t) =
2 cos t + 2 cos 2t. The equation f ′(t) = 0 has the unique solution t0 = π

3
in the

interval (0, π); comparing f(0) = 0, f(π) = 0 and f(π
3
) = 3

√
3

2
gives that f has its

largest value in the interval for t0 = α+β
2

= π
3
, with equality for α = β = π

3
.

Remark: Instead of using derivatives it is possible to prove

sin α + sin β + sin γ ≤ 3
√

3

2

using Jensen's inequality because sin(x) is concave for 0◦ ≤ x ≤ 180◦:

sin α + sin β + sin γ

3
≤ sin(

α + β + γ

3
) = sin(60◦) =

√
3

2



Alternate solution: Using F = sr = 1
2
(a + b + c)r and F = abc

4R
we get

1

ab
+

1

bc
+

1

ca
=

2s

abc
=

1

2Rr

so the problem can be solved using the fact that 2r ≤ R. But this follows from
Euler's formula |OI|2 = R(R − 2r) ≥ 0, where O is the circumcentre and I is the
incentre


