Solutions to the

2004 Nordic Mathematical Contest

Problem 1

Let r be the number of balls in the red bowl, b be the number of balls in the blue bowl and y be the number of balls in the yellow bowl. Because the mean of the 5 smallest integers is 3 we have $b \leq 5$. We have

$$
\begin{aligned}
r+b+y & =27 \\
15 r+3 b+18 y & =27 \cdot 14
\end{aligned}
$$

From this we get

$$
\begin{aligned}
4 r+5 y & =99 \\
b & =27-r-y \\
b & \leq 5
\end{aligned}
$$

The only positive solutions are $(r, b, y)=(11,5,11),(16,4,7),(21,3,3)$
The 3 values of r are all possible.

$$
\begin{array}{lll}
r=11: & \text { Blue }:\{1,2,3,4,5\} & \text { Red }:\{10,11, \cdots, 18,19,20\} \\
r=16: & \text { Blue }:\{1,2,4,5\} & \text { Red }:\{7,8, \cdots, 14,16,17, \cdots, 23\} \\
r=21: & \text { Blue }:\{2,3,4\} & \text { Red }:\{5,6, \cdots, 25\}
\end{array}
$$

Problem 2

A sequence $\left\{a_{k}\right\}$ is arithmetic if $a_{k+1}-a_{k}=d$ for all k, where d is some constant, so $a_{k}=d k+a_{0}$. Notice that the arithmetic sequence is constant modulo its fixed increase, $a_{k} \equiv a_{0}(\bmod d)$ for all k. So to find an increasing arithmetic sequence with no term in common with the Fibonacci sequence, it suffices to find integers $d>0$ and a_{0} such that f_{n} is never equivalent to a_{0} modulo d.

Calculate the Fibonacci sequence modulo 8:

$$
0,1,1,2,3,5,0,5,5,2,7,1,0,1, \ldots
$$

We have again reached: $0,1, \ldots$ and because of the relation $f_{n+2}=f_{n+1}+f_{n}$ the sequence now repeats itself modulo 8. Notice that 4 does not appear, so the arithmetic sequence $a_{k}=8 k+4$ has no term in common with the Fibonacci sequence.

Problem 3

Let $M_{k}=\max _{j} x_{j k}$ and $m_{k}=\min _{j} x_{j k}$. It is clear that M_{k} is a non-increasing and m_{k} a non-decreasing sequence. Also, $M_{k+1}=M_{k}$ only if $x_{j k}=x_{j+1, k}=M_{k}$ for some j. If exactly p "adjacent" $x_{i k}$'s equal M_{k}, then only $p-1$ adjacent $x_{i, k+1}$'s equal M_{k}. Eventually we reach a step, where $M_{k+1}<M_{k}$. Similarly, $m_{k+1}>m_{k}$ at some stage. Now if all the numbers in all the sequences are integers, so must be the maxima and minima. After a finite number of steps the maximum and minimum are equal, and so are all the numbers. We then have for some k

$$
x_{1 k}+x_{2 k}=x_{2 k}+x_{3 k}=\cdots=x_{n k}+x_{1 k}
$$

If n is odd, this gives $x_{1 k}=x_{3 k}=\cdots=x_{n k}=x_{2 k}=\cdots=x_{n-1, k}$. Working backwards, the numbers in the starting sequence have to be equal.

But if n is even, then the sequence $0,2,0,2, \ldots, 0,2$ is a counterexample because in next step all the numbers will be equal to 1 and we never get a number that is not an integer.

Remark: It can be shown that the only counterexamples are sequences of the type a, b, a, b, \ldots, a, b with $a \equiv b(\bmod 2)$:

In the argument above, if n is even, we get

$$
x_{1 k}=x_{3 k}=\cdots=x_{n-1, k}=a \quad \text { and } \quad x_{2 k}=x_{4 k}=\cdots=x_{n k}=b .
$$

But if $k>1$, then $x_{1 k}=\frac{1}{2}\left(x_{1, k-1}+x_{2, k-1}\right), x_{2 k}=\frac{1}{2}\left(x_{2, k-1}+x_{3, k-1}\right)$ etc., and

$$
\begin{gathered}
\frac{n}{2} a=x_{1 k}+x_{3 k}+\cdots+x_{n-1, k}=\frac{1}{2}\left(x_{1, k-1}+x_{2, k-1}+\cdots+x_{n, k-1}\right), \\
\frac{n}{2} b=x_{2 k}+x_{4 k}+\cdots+x_{n k}=\frac{1}{2}\left(x_{2, k-1}+x_{3, k-1}+\cdots+x_{n, k-1}+x_{1, k-1},\right.
\end{gathered}
$$

so $a=b$. Therefore it is only possible that $a \neq b$ when $k=1$ and clearly to get integers in step $k+1$ we must have $a \equiv b(\bmod 2)$.

Alternate solution for the odd case: Assume that $x_{1 k}, \ldots, x_{n k}$ are integers for some $k>1$. Then $x_{i, k-1} \equiv x_{i+1, k-1}(\bmod 2)$ for all i, and if $k>2$

$$
x_{i, k-2}+x_{i+1, k-2} \equiv x_{i+1, k-2}+x_{i+2, k-2}(\bmod 4) \quad \text { for all } i .
$$

Since n is odd, it follows that $x_{i, k-2} \equiv x_{i+1, k-2}(\bmod 4)$ for all i. By induction it follows that $x_{i, k-j} \equiv x_{i+1, k-j}\left(\bmod 2^{j}\right)$ for all i and all $j<k$. Hence if $x_{i, k}$ is an integer for all i and k, then $x_{i, 1}=x_{i+1,1}\left(\bmod 2^{j}\right)$ for all i and j, thus they must all be equal.

Problem 4

Let A, B and C be the vertices of the triangle and call the angles at the vertices α, β and γ, respectively. Let O be the centre of the circumcircle, so $|O A|=$ $|O B|=|O C|=R$. Draw the perpendiculars from O to each of the sides. This gives us three pairs of right angled triangles, from which we get that $a=2 R \sin \alpha$, $b=2 R \sin \beta$ and $c=2 R \sin \gamma$. Using this the inequality can be transformed to

$$
\sin \alpha+\sin \beta+\sin \gamma \geq 4 \sin \alpha \sin \beta \sin \gamma
$$

Using the GM-AM inequality we get

$$
4 \sin \alpha \sin \beta \sin \gamma \leq 4\left(\frac{\sin \alpha+\sin \beta+\sin \gamma}{3}\right)^{3} .
$$

We will show that

$$
\frac{\sin \alpha+\sin \beta+\sin \gamma}{3} \leq \frac{\sqrt{3}}{2}
$$

which is equivalent to

$$
4\left(\frac{\sin \alpha+\sin \beta+\sin \gamma}{3}\right)^{3} \leq \sin \alpha+\sin \beta+\sin \gamma
$$

which then will give the wanted inequality.
We find that

$$
\begin{aligned}
\sin \alpha+\sin \beta+\sin \gamma & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}+2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha+\beta}{2} \\
& \leq 2 \sin \frac{\alpha+\beta}{2}\left(1+\cos \frac{\alpha+\beta}{2}\right)
\end{aligned}
$$

The function $f(t)=2 \sin t(1+\cos t)=2 \sin t+\sin 2 t$ has the derivative $f^{\prime}(t)=$ $2 \cos t+2 \cos 2 t$. The equation $f^{\prime}(t)=0$ has the unique solution $t_{0}=\frac{\pi}{3}$ in the interval $(0, \pi)$; comparing $f(0)=0, f(\pi)=0$ and $f\left(\frac{\pi}{3}\right)=\frac{3 \sqrt{3}}{2}$ gives that f has its largest value in the interval for $t_{0}=\frac{\alpha+\beta}{2}=\frac{\pi}{3}$, with equality for $\alpha=\beta=\frac{\pi}{3}$.

Remark: Instead of using derivatives it is possible to prove

$$
\sin \alpha+\sin \beta+\sin \gamma \leq \frac{3 \sqrt{3}}{2}
$$

using Jensen's inequality because $\sin (x)$ is concave for $0^{\circ} \leq x \leq 180^{\circ}$:

$$
\frac{\sin \alpha+\sin \beta+\sin \gamma}{3} \leq \sin \left(\frac{\alpha+\beta+\gamma}{3}\right)=\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}
$$

Alternate solution: Using $F=s r=\frac{1}{2}(a+b+c) r$ and $F=\frac{a b c}{4 R}$ we get

$$
\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{2 s}{a b c}=\frac{1}{2 R r}
$$

so the problem can be solved using the fact that $2 r \leq R$. But this follows from Euler's formula $|O I|^{2}=R(R-2 r) \geq 0$, where O is the circumcentre and I is the incentre

