Solutions to the

2004 Nordic Mathematical Contest

Problem 1

Let r be the number of balls in the red bowl, b be the number of balls in the blue bowl and y be the number of balls in the yellow bowl. Because the mean of the 5 smallest integers is 3 we have $b \leq 5$. We have

$$r+b+y = 27$$
$$15r+3b+18y = 27 \cdot 14$$

From this we get

$$4r + 5y = 99$$

$$b = 27 - r - y$$

$$b < 5$$

The only positive solutions are (r, b, y) = (11, 5, 11), (16, 4, 7), (21, 3, 3)The 3 values of r are all possible.

 $\begin{array}{ll} r = 11: & \text{Blue}: \{1,2,3,4,5\} & \text{Red}: \{10,11,\cdots,18,19,20\} \\ r = 16: & \text{Blue}: \{1,2,4,5\} & \text{Red}: \{7,8,\cdots,14,16,17,\cdots,23\} \\ r = 21: & \text{Blue}: \{2,3,4\} & \text{Red}: \{5,6,\cdots,25\} \end{array}$

Problem 2

A sequence $\{a_k\}$ is arithmetic if $a_{k+1} - a_k = d$ for all k, where d is some constant, so $a_k = dk + a_0$. Notice that the arithmetic sequence is constant modulo its fixed increase, $a_k \equiv a_0 \pmod{d}$ for all k. So to find an increasing arithmetic sequence with no term in common with the Fibonacci sequence, it suffices to find integers d > 0 and a_0 such that f_n is never equivalent to a_0 modulo d.

Calculate the Fibonacci sequence modulo 8:

$$0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, \ldots$$

We have again reached: $0, 1, \ldots$ and because of the relation $f_{n+2} = f_{n+1} + f_n$ the sequence now repeats itself modulo 8. Notice that 4 does not appear, so the arithmetic sequence $a_k = 8k + 4$ has no term in common with the Fibonacci sequence.

Problem 3

Let $M_k = \max_j x_{jk}$ and $m_k = \min_j x_{jk}$. It is clear that M_k is a non-increasing and m_k a non-decreasing sequence. Also, $M_{k+1} = M_k$ only if $x_{jk} = x_{j+1,k} = M_k$ for some j. If exactly p "adjacent" x_{ik} 's equal M_k , then only p-1 adjacent $x_{i,k+1}$'s equal M_k . Eventually we reach a step, where $M_{k+1} < M_k$. Similarly, $m_{k+1} > m_k$ at some stage. Now if all the numbers in all the sequences are integers, so must be the maxima and minima. After a finite number of steps the maximum and minimum are equal, and so are all the numbers. We then have for some k

$$x_{1k} + x_{2k} = x_{2k} + x_{3k} = \dots = x_{nk} + x_{1k}$$

If n is odd, this gives $x_{1k} = x_{3k} = \cdots = x_{nk} = x_{2k} = \cdots = x_{n-1,k}$. Working backwards, the numbers in the starting sequence have to be equal.

But if n is even, then the sequence $0, 2, 0, 2, \ldots, 0, 2$ is a counterexample because in next step all the numbers will be equal to 1 and we never get a number that is not an integer.

Remark: It can be shown that the only counterexamples are sequences of the type a, b, a, b, \ldots, a, b with $a \equiv b \pmod{2}$:

In the argument above, if n is even, we get

$$x_{1k} = x_{3k} = \dots = x_{n-1,k} = a$$
 and $x_{2k} = x_{4k} = \dots = x_{nk} = b$.

But if
$$k > 1$$
, then $x_{1k} = \frac{1}{2}(x_{1,k-1} + x_{2,k-1}), x_{2k} = \frac{1}{2}(x_{2,k-1} + x_{3,k-1})$ etc., and

$$\frac{n}{2}a = x_{1k} + x_{3k} + \dots + x_{n-1,k} = \frac{1}{2}(x_{1,k-1} + x_{2,k-1} + \dots + x_{n,k-1}),$$
$$\frac{n}{2}b = x_{2k} + x_{4k} + \dots + x_{nk} = \frac{1}{2}(x_{2,k-1} + x_{3,k-1} + \dots + x_{n,k-1} + x_{1,k-1},$$

so a = b. Therefore it is only possible that $a \neq b$ when k = 1 and clearly to get integers in step k + 1 we must have $a \equiv b \pmod{2}$.

Alternate solution for the odd case: Assume that $x_{1k}, ..., x_{nk}$ are integers for some k > 1. Then $x_{i,k-1} \equiv x_{i+1,k-1} \pmod{2}$ for all i, and if k > 2

$$x_{i,k-2} + x_{i+1,k-2} \equiv x_{i+1,k-2} + x_{i+2,k-2} \pmod{4}$$
 for all i

Since *n* is odd, it follows that $x_{i,k-2} \equiv x_{i+1,k-2} \pmod{4}$ for all *i*. By induction it follows that $x_{i,k-j} \equiv x_{i+1,k-j} \pmod{2^j}$ for all *i* and all j < k. Hence if $x_{i,k}$ is an integer for all *i* and *k*, then $x_{i,1} = x_{i+1,1} \pmod{2^j}$ for all *i* and *j*, thus they must all be equal.

Problem 4

Let A, B and C be the vertices of the triangle and call the angles at the vertices α , β and γ , respectively. Let O be the centre of the circumcircle, so |OA| = |OB| = |OC| = R. Draw the perpendiculars from O to each of the sides. This gives us three pairs of right angled triangles, from which we get that $a = 2R \sin \alpha$, $b = 2R \sin \beta$ and $c = 2R \sin \gamma$. Using this the inequality can be transformed to

$$\sin \alpha + \sin \beta + \sin \gamma \ge 4 \sin \alpha \sin \beta \sin \gamma.$$

Using the GM-AM inequality we get

$$4\sin\alpha\sin\beta\sin\gamma \le 4\Big(\frac{\sin\alpha+\sin\beta+\sin\gamma}{3}\Big)^3.$$

We will show that

$$\frac{\sin \alpha + \sin \beta + \sin \gamma}{3} \le \frac{\sqrt{3}}{2}$$

which is equivalent to

$$4\Big(\frac{\sin\alpha + \sin\beta + \sin\gamma}{3}\Big)^3 \le \sin\alpha + \sin\beta + \sin\gamma,$$

which then will give the wanted inequality.

We find that

$$\sin \alpha + \sin \beta + \sin \gamma = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} + 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\leq 2 \sin \frac{\alpha + \beta}{2} (1 + \cos \frac{\alpha + \beta}{2}).$$

The function $f(t) = 2 \sin t(1 + \cos t) = 2 \sin t + \sin 2t$ has the derivative $f'(t) = 2 \cos t + 2 \cos 2t$. The equation f'(t) = 0 has the unique solution $t_0 = \frac{\pi}{3}$ in the interval $(0,\pi)$; comparing f(0) = 0, $f(\pi) = 0$ and $f(\frac{\pi}{3}) = \frac{3\sqrt{3}}{2}$ gives that f has its largest value in the interval for $t_0 = \frac{\alpha+\beta}{2} = \frac{\pi}{3}$, with equality for $\alpha = \beta = \frac{\pi}{3}$.

Remark: Instead of using derivatives it is possible to prove

$$\sin \alpha + \sin \beta + \sin \gamma \le \frac{3\sqrt{3}}{2}$$

using Jensen's inequality because sin(x) is concave for $0^{\circ} \le x \le 180^{\circ}$:

$$\frac{\sin \alpha + \sin \beta + \sin \gamma}{3} \le \sin(\frac{\alpha + \beta + \gamma}{3}) = \sin(60^\circ) = \frac{\sqrt{3}}{2}$$

Alternate solution: Using $F = sr = \frac{1}{2}(a+b+c)r$ and $F = \frac{abc}{4R}$ we get

$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{2s}{abc} = \frac{1}{2Rr}$$

so the problem can be solved using the fact that $2r \leq R$. But this follows from Euler's formula $|OI|^2 = R(R - 2r) \geq 0$, where O is the circumcentre and I is the incentre