Nordic Mathematical Contest 1997

1. For any set A of positive integers, let n_{A} denote the number of triples (x, y, z) of elements of A such that $x<y$ and $x+y=z$. Find the maximum value of n_{A} given that A contains seven distinct elements.
2. Let $A B C D$ be a convex quadrilateral. Assume that there exists an internal point P of $A B C D$ such that the areas of the triangles $A B P$, $B C P, C D P$ and $D A P$ are all equal. Prove that at least one of the diagonals of the quadrilateral bisects the other.
3. Assume A, B, C, D are four distinct points in the plain. Three of the segments $A B, A C, A D, B C, B D, C D$ have length a. The other three have length $b>a$. Find all possible values of the ration b / a.
4. Let f be a function defined on $\{0,1,2, \ldots\}$ such that
$f(2 x)=2 f(x)$
$f(4 x+1)=4 f(x)+3$
$f(4 x-1)=2 f(2 x-1)-1$
Prove that f is injective (if $f(x)=f(y)$, then $x=y$).
