
The 22nd Nordic Mathematical Contest
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Solutions

Time allowed is 4 hours. Each problem is worth 5 points. The only permitted
aids are writing and drawing materials.

Problem 1

Determine all real numbers A, B and C such that there exists a real function
f that satisfies

f(x + f(y)) = Ax + By + C

for all real x and y.

Solution. Let A, B and C be real numbers and f a function such that
f(x + f(y)) = Ax + By + C for all x and y.

Let z be a real number and set x = z − f(0) and y = 0. Then

f(z) = f(z − f(0) + f(0)) = A(z − f(0)) + B · 0 + C = Az − Af(0) + C,

so there are numbers a and b such that f(z) = az + b for all z. Now
f(x + f(y)) = ax + a2y + (a + 1)b, and (A, B, C) = (a, a2, (a + 1)b), where a
and b are arbitrary real numbers, that is, (A, B, C) = (a, a2, c), where a 6= −1
and c are arbitrary, or (A, B, C) = (−1, 1, 0).

Problem 2

Assume that n ≥ 3 people with different names sit around a round table. We
call any unordered pair of them, say M and N , dominating, if

(i) M and N do not sit on adjacent seats, and

(ii) on one (or both) of the arcs connecting M and N along the table edge,
all people have names that come alphabetically after the names of M
and N .

Determine the minimal number of dominating pairs.



Solution. We will show by induction that the number of dominating pairs
(hence also the minimal number of dominating pairs) is n− 3 for n ≥ 3.

If n = 3, all pairs of people sit on adjacent seats, so there are no domin-
ating pairs. Assume that the number of dominating pairs is n − 3 for some
n ≥ 3. If there are n + 1 people around the table, let the person whose name
is alphabetically last leave the table. The two people sitting next to that
person, who formed a dominating pair, no longer do. On the other hand,
any other dominating pair remains a dominating pair in the new configura-
tion of n people, and any dominating pair in the new configuration was also
a dominating pair in the old. The number of dominating pairs in the new
configuration is n− 3, so the number in the old was (n + 1)− 3.

Problem 3

Let ABC be a triangle and let D and E be points on BC and CA, respectively,
such that AD and BE are angle bisectors of ABC . Let F and G be points
on the circumcircle of ABC such that AF and DE are parallel and FG and
BC are parallel. Show that
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Solution. Let AB = c, BC = a and
CA = b. Then it follows from the angle
bisector theorem that CD = ab/(b + c).

(The angle bisector theorem can be
proved by letting A′ be the intersection
point of the line CA and the line through
B parallel with the bisector AD (dashed
lines). Then the angles BAD , ABA′, CAD
and CA′B are equal, so the triangle A′AB
is isosceles, and the equality follows from
the similarity of the triangles ACD and
A′CB .)

Similarly, CE = ab/(a + c), so
CE/CD = (b + c)/(a + c). The angles
ABG , AFG and EDC are equal, and so are AGB and ACB , and consequently,
the triangles CED and GAB are similar. The conclusion follows.

(If, by adding an additional assumption, we make ABCG a convex quad-
rilateral, we can use Ptolemy’s theorem to get the more interesting result
that GA = GB + GC .)
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Problem 4

The difference between the cubes of two consecutive positive integers is a
square n2, where n is a positive integer. Show that n is the sum of two
squares.

Solution. Assume that (m + 1)3 − m3 = n2. Rearranging we get
3(2m + 1)2 = (2n + 1)(2n− 1). Since 2n + 1 and 2n− 1 are relatively prime
(if they had a common divisor, it would have divided the difference, which is
2, but they are both odd), one of them is a square (of an odd integer, since
it is odd) and the other divided by 3 is a square.

An odd number squared minus 1 is divisible by 4 since (2t + 1)2 − 1 =
4(t2 + t). From the first equation we see that n is odd, say n = 2k + 1. Then
2n + 1 = 4k + 3, so the square must be 2n − 1, say 2n − 1 = (2t + 1)2.
Rearrangement yields n = t2 + (t + 1)2.

An example: 83 − 73 = (22 + 32)2.
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