Problem 1. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that the equality

$$f(|x|y) = f(x)|f(y)|$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle ABC and let Γ be its circumcircle. Let the line AI intersect Γ again at D. Let E be a point on the arc \widehat{BDC} and F a point on the side BC such that

$$\angle BAF = \angle CAE < \frac{1}{2}\angle BAC.$$

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect on Γ .

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g \colon \mathbb{N} \to \mathbb{N}$ such that

$$(g(m)+n)(m+g(n))$$

is a perfect square for all $m, n \in \mathbb{N}$.

Language: English

Time: 4 hours and 30 minutes Each problem is worth 7 points