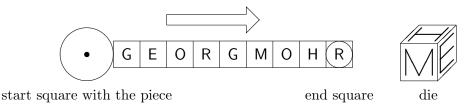
THE GEORG MOHR COMPETITION IN MATHEMATICS 2001 Thursday 11 January 2001, 9.00–13.00

Tools for writing and drawing are the only ones allowed.

Problem 1. For the GEORG MOHR game one uses a playing piece, a GEORG MOHR die (i.e. a die whose six sides show the letters G, E, O, R, M and H) and a board:

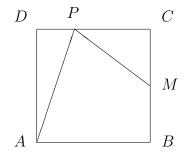


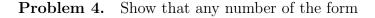
In every throw one moves to the next square with the letter shown by the die; if this is impossible one must stay.

Peter plays the GEORG MOHR game. Determine the probability of Peter completing the game in 2 throws.

Problem 2. Does such a positive integer n exist that the number n! has exactly 11 zeros at the end? (The symbol n! denotes the number $1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$.)

Problem 3. In the square ABCD of side length 2 the point M is the mid-point of BC and P a point on DC. Determine the smallest value of AP + PM.





$$4444....44 - 88..8$$

with twice as many digits 4 than digits 8 is a perfect square.

Problem 5. Is it possible to place within a square an equilateral triangle whose area is larger than $\frac{9}{20}$ of the area of the square?

Sponsors: Matematiklærerforeningen, Dansk Matematisk Forening, Georg Mohr Fonden, UNI·C, Gyldendal.