
“Baltic Way – 93” mathematical team contest

Riga, November 13, 1993

Hints and solutions

1. Assume a1 > a3 > 0 . As the square of a1a2a3 must be a five-digit number we have a1 6 3 .
Now a straightforward case study shows that a1a2a3 can be 301 , 311 , 201 , 211 or 221 .

2. Let a = 6 , b = 3 and denote xn = an + b . Then we have xl · xm = x6lm+3(l+m)+1 for any
natural numbers l and m . Thus, any powers of the numbers xn belong to the same sequence.

3. The three consecutive numbers 33 = 3 · 11 , 34 = 2 · 17 and 35 = 5 · 7 are all “interesting”.
On the other hand, among any four consecutive numbers there is one of the form 4k which is
“interesting” only if k = 1 . But then, we have either 3 or 5 among the four numbers, neither
of these being “interesting”.
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√
√
√
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4
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and obviously p is an odd number not less than 5 . If p > 9 then

n >
625

4
and the initial expression would be undefined. The two remaining values p = 5 and

p = 7 give n = 0 and n = 144 respectively.

5. Factorize the expression:

n12 − n8 − n4 + 1 = (n4 + 1)(n2 + 1)2(n − 1)2(n + 1)2

and note that one of the two even numbers n − 1 and n + 1 is divisible by 4 .

6. Denote h(x) =
f(x)

x
, then we have g(x) =

x2

f(x)
=

x

h(x)
and g(f(x)) =

f(x)

h(f(x))
= x which

yields h(f(x)) =
f(x)

x
= h(x) . Using induction we easily get h(f (k)(x)) = h(x) for any

natural number k where f (k)(x) denotes f(f(. . . f
︸ ︷︷ ︸

k

(x) . . .)) . Now

f (k+1)(x)=f(f (k)(x))=f (k)(x)·h(f (k)(x))=f (k)(x)·h(x)

and
f (k+1)(x)

f (k)(x)
= h(x) for any natural number k . Thus,

f (k)(x)

x
=

f (k)(x)

f (k−1)(x)
· . . . · f(x)

x
= (h(x))k

and
f (k)(3)

3
= (h(3))k ∈

(2

3
,
4

3

)

for all k . This is only possible if h(3) = 1 and thus

f(3) = g(3) = 3 .
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7. From the second and third equation we find z = 2x and x =
20 − y

3
. Substituting these

into the first equation yields

(
40 − 2y

3

)x

=
(
y2

)x
. As x 6= 0 (otherwise we have 00 in the

first equation which is usually considered undefined) we have y2 = ±40 − 2y

3
(the ‘−’ case

occurring only if x is even). The equation y2 = −40 − 2y

3
has no integer solutions; from

y2 =
40 − 2y

3
we get y = −4 , x = 8 , z = 16 (the other solution y =

10

3
is not an integer).

Remark. If we accept the definition 00 = 1 , then we get the additional solution x = 0 ,
y = 20 , z = 0 . Defining 00 =0 gives no additional solution.

8. Denote by I and D the sets of all positive integers with strictly increasing (respectively,
decreasing) sequence of digits. Let D0 , D1 , D2 and D3 be the subsets of D consisting of
all numbers starting with 9 , not starting with 9 , ending in 0 and not ending in 0 , respectively.
Let S(A) denote the sum of all numbers belonging to a set A . All numbers in I are obtained
from the number 123456789 by deleting some of its digits. Thus, for any k = 0, 1, . . . , 9 there
are Ck

9 k-digit numbers in I (here we consider 0 a 0-digit number). Every k-digit number
a ∈ I can be associated with a unique number b0 ∈ D0 , b1 ∈ D1 and b3 ∈ D3 such that

a + b0 = 999 . . . 9 = 10k+1 − 1 ;

a + b1 = 99 . . . 9 = 10k − 1 ;

a + b3 = 111 . . . 10 =
10

9
(10k − 1) .

Hence we have

S(I) + S(D0) =

9∑

k=0

Ck
9 (10k+1 − 1) = 10 · 119 − 29 ;

S(I) + S(D1) =

9∑

k=0

Ck
9 (10k − 1) = 119 − 29 ;

S(I) + S(D3) =
10

9
(119 − 29) .

Noting that S(D0) + S(D1) = S(D2) + S(D3) = S(D) and S(D2) = 10S(D3) we obtain the
system of equations







2S(I) + S(D) = 1110 − 210

S(I) +
1

11
S(D) =

10

9
(119 − 29)

which yields

S(I) + S(D) =
80

81
· 1110 − 35

81
· 210 .

This sum contains all one-digit numbers twice, so the final answer is

80

81
· 1110 − 35

81
· 210 − 45 = 25617208995 .

9. Adding all four equations we get x + y + z + t = 0 . On the other hand, the numbers x, y, z, t

are simultanously positive, negative or equal to zero. Thus, x = y = z = t = 0 is the only
solution.
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10. Let m be such index that |a′
m − b′m| = max

16i6n
|a′

i − b′i| = c . Without loss of generality we

may assume a′
m > b′m . Consider the numbers a′

m, a′
m+1, . . . , a

′
n and b′1, b

′
2, . . . , b

′
m — as there

are n + 1 numbers altogether and only n places in the initial sequence there must exist an
index j such that we have aj among a′

m, a′
m+1, . . . , a

′
n and bj among b′1, b

′
2, . . . , b

′
m . Now, as

bj 6 b′m < a′
m 6 aj we have |aj −bj | > |a′

m−b′m| = c and max
16i6n

|ai−bi| > c = max
16i6n

|a′
i−b′i| .

11. Assume the big triangle lie on one of its sides, then a suitable strategy for the spider will be as
follows:

1) First, move to the lower left vertex of the big triangle;
2) Then, as long as the fly is higher than the spider, move upwards along the left side of the

big triangle;
3) After reaching the horizontal line where the fly is, retain this situation while moving to

the right (more precisely: move “right”, “right-up” or “right-down” depending on the last
move of the fly).

12. An example for 18 connections is shown on Fig. 1 (where single, double and dashed lines
denote the three different kinds of transportation). On the other hand, a graph with 13
vertices can be connected if it has at least 12 edges, so the total number of connections for
any two kinds of vehicle is at least 12 . Thus, twice the total number of all connections is at
least 12 + 12 + 12 = 36 .
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13. An example for 7 vertices is shown on Fig. 2. Now assume we have chosen 8 vertices sat-
isfying the conditions of the problem. Let the height of each small triangle be equal to 1
and denote by ai , bi , ci the distance of the i-th point from the three sides of the big tri-
angle. For any i = 1, 2, . . . , 8 we then have ai, bi, ci > 0 and ai + bi + ci = 10 . Thus,
(a1 + a2 + . . . + a8) + (b1 + b2 + . . . + b8) + (c1 + c2 + . . . + c8) = 80 . On the other hand, each
of the sums in the brackets is not less than 0 + 1 + . . . + 7 = 28 , but 3 · 28 = 84 > 80 , a
contradiction.

14. Remark: The proposed solution to this problem claimed that it is enough to remove 7 vertices
but the example to demonstrate this appeared to be incorrect. Below we show that removing
6 vertices is not sufficient but removing 8 vertices is. It seems that removing 7 vertices is
not sufficient but we currently know no potential way to prove this, apart from a tedious case
study.

The example on Fig. 3a demonstrates that it suffices to remove 8 vertices to “destroy” all
squares. Assume now that we have managed to do that by removing only 6 vertices. Denote
the horizontal and vertical lines by A , B , . . . , E and 1 , 2 , . . . , 5 respectively. Obviously,
one of the removed vertices must be a vertex of the big square — let this be vertex A1 . Then,
in order to “destroy” all the squares shown on Fig. 3b–e we have to remove vertices B2 , C3 ,
D4 , D2 and B4 . Thus we have removed 6 vertices without having any choice but a square
shown on Fig. 3f is still left intact.
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15. We can write 1, 2, 3, 4, 5, 6 on the sides of one die and 1, 1, 1, 7, 7, 7 on the sides of the
other. Then each of the 12 possible sums appears in exactly 3 cases.

16. First, note that the centres O1 and O2 of the two circles lie on different sides of the line EH —
otherwise we have r < 12 and AB cannot be equal to 14 . Let P be the intersection point of
EH and O1O2 (see Fig. 4). Points A and D lie on the same side of the line O1O2 (otherwise
the three lines AD , EH and O1O2 would intersect in P and |AB| = |BC| = |CD| ,
|EF | = |FG| = |GH| would imply |BC| = |FG| , a contradiction). It is easy to see that
|O1O2| = 2 · |O1P | = |AC| = 28 cm. Let h = |O1T | be the height of triangle O1EP , then we

have h2 = 142 −62 = 160 from triangle O1TP and r2 = h2 +32 = 169 from triangle O1TF .
Thus, r = 13 cm.

q
qq qq

q

q

q

qq q

O1 O2

C DA B

E

F
G

H

P+
qT

Figure 14 Figure 15

JĴ
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17. Yes, it is. First, place the three points at the vertices of an equilateral triangle at the “zero”
moment and let them move with equal velocities along the straight lines determined by the
sides of the triangle as shown on Fig. 5. Then, at any moment in the past or future, the points
are located at the vertices of some equilateral triangle, and thus cannot be collinear. Finally,
to make the velocities of the points also differ, take any non-zero constant vector such that its
projections to the three lines have different lengths and add it to each of the velocity vectors.
This is equivalent to making the whole picture “drift” across the plane with constant velocity,
so the non-collinearity of our points is preserved (in fact, they are still located at the vertices
of an equilateral triangle at any given moment).

18. Let the line OC intersect AB in point P . As AM is a median, we have
|AP |
|PB| =

|AK|
|KC|

(this obviously holds if |AB| = |AC| and the equality is preserved under uniform compres-
sion of the plane along BK ). Applying the sine theorem to the triangles ABK and BCK

we obtain
|AP |
|PB| =

|AK|
|KC| =

|AB|
|BC| =

5

4
(see Fig. 6). As |AP | + |PB| = |AB| = 15

then we have |AP | =
25

3
and |PB| =

20

3
. Thus |AC|2 − |BC|2 = 25 = |AP |2 − |BP |2

and |AC|2 − |AP |2 = |BC|2 − |BP |2 . Applying now the cosine theorem to the triangles
APC and BPC we get cos 6 APC = cos 6 BPC , i.e. P = L . As above, we can use a
compression of the plane to show that KP ‖ BC and therefore 6 OPK = 6 OCB . As
|BM | = |MC| and 6 BPC = 90◦ we have 6 OCB = 6 OPM . Combining these equalities, we
get 6 OLK = 6 OPK = 6 OCB = 6 OPM = 6 OLM .
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19. As the quadrangle ABCD is inscribed in a circle, we have
6 ABC + 6 CDA = 6 BCD + 6 DAB = 180◦ . It suffices to show that each of these an-
gles is equal to 90◦ , then each of the angles AOB , BOC , COD and DOA is also equal
to 90◦ and thus ABCD is a square. We consider the two possible situations:
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a) At least one of the diagonals of ABCD is a diameter — say, 6 AOB+ 6 BOC = 180◦ . Then
6 ABC = 6 CDA = 90◦ and at least two of the angles AOB , BOC , COD and DOA must be
90◦ : say, 6 AOB = 6 BOC = 90◦ . Now, 6 COD = 6 DAB and 6 DOA = 6 BCD (see Fig. 7).

Using the fact that
1

2
6 DOA = 6 DCA = 6 BCD − 45◦ we have 6 BCD = 6 DAB = 90◦ .

b) None of the diagonals of the quadrangle ABCD is a diameter. Then
6 AOB + 6 COD = 6 BOC + 6 DOA = 180◦ and no angle of the quadrangle ABCD is equal
to 90◦ . Consequently, none of the angles AOB , BOC , COD and DOA is equal to 90◦ .
W.l.o.g. we assume that 6 AOB > 90◦ , 6 BOC > 90◦ (see Fig. 8). Then 6 ABC < 90◦ and
thus 6 ABC = 6 COD or 6 ABC = 6 DOA . As 6 COD + 6 DOA = 6 AOC = 26 ABC , we
have 6 COD = 6 DOA and 6 AOB + 6 DOA = 180◦ , a contradiction.

20. Clearly, the volume of a regular tetrahedron contained in a sphere reaches its maximum value
if and only if all four vertices of the tetrahedron lie on the surface of the sphere. Therefore, a
“good” tetrahedron with maximum volume must have its vertices at the vertices of the cube (for
proof, inscribe the cube in a sphere). There are exactly two such tetrahedra, their volume being

equal to 1 − 4 · 1

6
=

1

3
. On the other hand, one can find arbitrarily small “good” tetrahedra

by applying homothety to the maximal tetrahedron, with the centre of the homothety in one
of its vertices.
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