
“Baltic Way – 92” mathematical team contest

Vilnius, November 7, 1992

Hints and solutions

1. Since q − p = 2k is even, we have p + q = 2(p + k) . It is clear that p < p + k < p + 2k = q .
Therefore p + k is not prime and, consequently, is a product of two positive integers greater
than 1 .

2. Consider numbers of the form ppn−1 where p is an arbitrary prime number and n = 1, 2, . . . .

3. For any natural number n , we have n2 ≡ 0 or n2 ≡ 1 (mod 4) and n3 ≡ 0 or

n3 ≡ ±1 (mod 9) . Thus { 36n + 3 | n = 1, 2, . . . } is a progression with the required property.

4. There is no such sexagon. The sum of any six consecutive positive integers is odd. On the
other hand, the sum of squares of lengths of the sexagon’s sides is equal to the sum of squares
of their projections onto the two axes. But the sum of squares of the projections has the same
parity as the sum of the projections themselves, the latter being obviously even.

5. Use the identity
(

a2 + b2 + (a + b)2
)2

= 2
(

a4 + b4 + (a + b)4
)

.

6. Note that

k3−1

k3+1
=

(k−1)(k2+k+1)

(k+1)(k2−k+1)
=

(k−1)(k2+k+1)

(k+1)
(

(k−1)2+(k−1)+1
) .

After obvious cancellations we get

100
∏

k=2

k3 − 1

k3 + 1
=

1 · 2 · (1002 + 100 + 1)

100 · 101 · (12 + 1 + 1)
>

2

3
.

7. The first of these numbers is less than

aaa·

·

·

1992 }

1992
= aaa·

·

·

1992 }

1991
= . . . = 1992 .

8. Since 2x must be positive, we have
2x + 4

4 − x
> 0 yielding −2 < x < 4 . Thus it suffices to

check the points −1, 0, 1, 2, 3 . The three solutions are x = 0, 1, 2 .

9. Consider the derivative f ′(x) = 3x2 + 2ax + b . Since b < 0 , it has two real roots x1 and
x2 . Since f(x) → ±∞ as x → ±∞ , it is sufficient to check that f(x1) and f(x2) have
different signs, i.e., f(x1)f(x2) < 0 . Dividing f(x) by f ′(x) and using the equality ab = 9c

we find that the remainder is equal to x(
2

3
b −

2

9
a2) . Now, as x1x2 =

b

3
< 0 we have

f(x1)f(x2) = x1x2(
2

3
b −

2

9
a2)2 < 0 .

10. Let p(x) = ax4 + bx3 + cx2 + dx + e with a 6= 0 . From (i) – (iii) we get b = d = 0 , a > 0

and e = 1 . From (iv) it follows that p′(x) = 4ax3 + 2cx has at least two different real roots.

Since a > 0 , then c < 0 and p′(x) has three roots x = 0 , x = ±

√

−c

2a
. The minimum

points mentioned in (iv) must be x = ±

√

−c

2a
, so 2

√

−c

2a
= 2 and c = −2a . Finally, by (ii)

we have p(x) = a(x2 − 1)2 + 1− a > 0 for all x , which implies 0 < a 6 1 . It is easy to check
that every such polynomial satisfies the conditions (i) – (iv) .
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11. By condition (iii) we have f(1) = 1 . Applying condition (iii) to each of (i) and (ii) gives

two new conditions (i′) and (ii′) taking care of q > 2 and
1

2
6 q < 1 respectively. Now,

for any rational number
a

b
6= 1 we can use (i) , (i′) , (ii) or (ii′) to express f

(a

b

)

in terms

of f
(a′

b′

)

where a′ + b′ < a + b . The recursion therefore finishes in a finite number of steps,

when we can use f(1) = 1 . Thus we have established that such a function f exists, and it is
uniquely defined by the given conditions.

Remark. Initially it was also required to determine all fixed points of the function f , i.e.,
all solutions q of the equation f(q) = q , but the Jury of the contest decided to simplify the
problem. We present here a solution for the complete one. First note that if q is a fixed point,

then so is
1

q
. By (i) , if 0 < q <

1

2
is a fixed point, then f

( q

1 − 2q

)

= q − 1 < 0 which is

impossible, so there are no fixed points 0 < q <
1

2
or q > 2 . Now, for a fixed point 1 6

a

b
6 2

(ii) easily gives us that
a

b
− 1 =

a − b

b
and

b

a − b
are fixed points too. It is easy to see that

1 6
b

a − b
6 2 (the latter holds because

b

a − b
is a fixed point). As this new fixed point has

the sum of its numerator and denominator strictly less than
a

b
we can continue in this manner

until, in a finite number of steps, we arrive to the fixed point 1 . By reversing the process, any

fixed point q > 1 can be constructed by repeatedly using the condition that if
a

b
> 1 is a

fixed point then so is
a + b

a
, starting with a = b = 1 . It is now an easy exercise to see that

these fixed points have the form
Fn+1

Fn

where {Fn}n∈N is the sequence of Fibonacci numbers.

12. We show that L = 1 is the only possible value. Assume L > 1 , then there exists a number

N such that for any n > N we have
ϕ(n)

n
> 1 and thus ϕ(n) > n + 1 > N + 1 . But then

ϕ cannot be bijective, since the numbers 1, 2, . . . , N − 1 cannot be bijectively mapped onto
1, 2, . . . , N .

Now assume L < 1 . Since ϕ is bijective we clearly have ϕ(n) → ∞ as n → ∞ . Then

lim
n→∞

ϕ−1(n)

n
= lim

n→∞

ϕ−1(ϕ(n))

ϕ(n)
= lim

n→∞

n

ϕ(n)
=

1

L
> 1 ,

i.e. lim
n→∞

ϕ−1(n)

n
> 1 , which is a contradiction since ϕ−1 is also bijective.

13. Since (xi + yi)
2

> 4xiyi , it is sufficient to prove that

(

n
∑

i=1

1

xiyi

)(

n
∑

i=1

xiyi

)

> n2 .

This can easily be done by induction using the fact that a +
1

a
> 2 for any a > 0 .

14. Consider the town A from which a maximum number of towns can be reached. Suppose there
is a town B which cannot be reached from A . Then A can be reached from B and so one
can reach more towns from B than from A , a contradiction.

15. Start assigning the species to cages in an arbitrary order. Since for each species there are at
most three species incompatible with it, we can easily add it in one of the four cages.
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Remark. Initially the problem was posed as follows: “. . . He plans to put two species in each
cage . . . ”. Because of a misprint the word “two” disappeared, and the problem became actually
trivial. Let us give a solution to the original problem. Start with the distribution obtained
above. If in some cage A there are more than three species, then there is also a cage B with
at most one species and this species is compatible with at least one species in cage A which
we can then transfer to cage B . Thus we may assume that there are at most three species in
each cage. If there are two cages with 3 species then we can obviously transfer one of these 6
species to one of the remaining two cages. Now, assume the four cages contain 1 , 2 , 2 and
3 species respectively. If the species in the first cage is compatible with one in the fourth cage
then transfer that species to the first cage, and we are done. Otherwise, for an arbitrary species
X in the fourth cage there exists a species compatible with it in either the second or the third
cage. Transfer the other species from that cage to the first cage, and then X to that cage.

16. No, it cannot. Let us call a series of faces F1, F2, . . . , Fk a ring if the pairs (F1, F2) , (F2, F3) ,
. . . , (Fk−1, Fk) , (Fk, F1) each have a common edge and all these common edges are parallel.
It is not difficult to see that any two rings have exactly two common faces and, conversely, each
face belongs to exactly two rings. Therefore, if there are n rings then the total number of faces
must be 2C2

n = n(n − 1) . But there is no positive integer n such that n(n − 1) = 1992 .

17. Denote 6 ACD = 2α (see Fig. 1). Then 6 CAD =
π

2
−2α , 6 ABD = 2α , 6 ADB =

π

2
−α and

6 CDB = α . The sine theorem applied to triangles DCP and DAP yields
|DP |

sin 2α
=

2

5 sin α

and
|DP |

sin
(π

2
− 2α

)
=

8

5 sin
(π

2
− α

)
. Combining these equalities we have

2 sin 2α

5 sin α
=

8 cos 2α

5 cos α

which gives 4 sin α cos2 α = 8 cos 2α sin α and cos 2α + 1 = 4 cos 2α . So we get cos 2α =
1

3

and |CD| = 2 cos 2α =
2

3
.

18. Let K, L, M be the midpoints of the sides AB, BC, AC of a non-obtuse triangle ABC (see
Fig. 2). Note that the centre O of the circumcircle is inside the triangle KLM (or at one of
its vertices if ABC is a right-angled triangle). Therefore |AK|+|KL|+|LC| > |AO|+|OC| and
hence |AB|+|AC|+|BC| > 2 · (|AO|+|OC|) = 2d , where d is the diameter of the circumcircle.
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19. Let F1 be the second intersection point of the line AD and the circle C (see Fig. 3). Consider
the homothety with centre A which maps D onto F1 . This homothety maps the circle C1

onto C and the tangent line t of C1 onto the tangent line of the circle C at F1 . Let us do
the same with the circle C2 and the line BE : let F2 be their intersection point and consider
the homothety with centre B , mapping E onto F2 , C2 onto C and t onto the tangent of
C at point F2 . Since the tangents of C at F1 and F2 are both parallel to t , they must
coincide as well as the points F1 and F2 .

20. By straightforward computation, we find:

p(p − c) =
1

4

(

(a + b)2 − c2
)

=
ab

2
= S ,

(p − a)(p − b) =
1

4

(

c2 − (a − b)2
)

=
ab

2
= S .
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