
“Baltic Way – 91” mathematical team contest

Tartu, December 14, 1991

Hints and solutions

1. Let S =
∏

16i<j6n

(ai−aj) . Note that 1991 = 11 ·181 . Therefore S is divisible by 1991 if and only

if it is divisible by both 11 and 181 . If n 6 181 then we can take the numbers a1, . . . , an

from distinct congruence classes modulo 181 so that S will not be divisible by 181 . On the
other hand, if n > 182 then according to the pigeonhole principle there always exist ai and
aj such that ai−aj is divisible by 181 (and of course there exist ak and al such that ak−al

is divisible by 11 ).

2. Factorizing, we get

1021991 + 1031991 = (102 + 103)(1021990 − 1021989 · 103 +

+ 1021988 · 1032 + . . . + 1031990)

where 102 + 103 = 205 = 5 · 41 . It suffices to show that the other factor is not divisible by 5 .
Let ak = 102k · 1031990−k , then ak ≡ 4 (mod 5) if k is even and ak ≡ −4 (mod 5) if k is
odd. Thus the whole second factor is congruent to 4 · 1991 ≡ 4 (mod 5) .

3. The number of different possibilities for buying a cat and a sack is 20 · 20 = 400 while the
number of different possible prices is 1600− 1210 + 1 = 391 . Thus by the pigeonhole principle
there exist two combinations of a cat and a sack costing the same amount of money. Note that
the two cats (and also the two sacks) involved must be different as otherwise the two sacks
(respectively, cats) would have equal prices.

4. As an − bn = (a − b)(an−1 + an−2b + . . . + bn−1) , then for any distinct integers a, b and
for any polynomial p(x) with integer coefficients p(a) − p(b) is divisible by a − b . Thus,
p(n) − p(−n) 6= 0 is divisible by 2n and consequently p(−n) 6 p(n) − 2n < n − 2n = −n .

5. To prove the first inequality, note that
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. For the second part, use the inequality
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for

x = a + b , y = b + c and z = c + a .

6. Denote f(x) = [x] · {x} , then we have to solve the equation f(x) = 1991x . Obviously,
x = 0 is a solution. For any x > 0 we have 0 6 [x] 6 x and 0 6 {x} < 1 which imply
f(x) < x < 1991x . For x 6 −1 we have 0 > [x] > x − 1 and 0 6 {x} < 1 which imply
f(x) > x − 1 > 1991x . Finally, if −1 < x < 0 , then [x] = −1 , {x} = x − [x] = x + 1 and

f(x) = −x − 1 . The only solution of the equation −x − 1 = 1991x is x = − 1

1992
.

7. In an acute-angled triangle we have A + B >
π

2
, hence sin A > sin

(π

2
− B

)

= cos B and

sin B > cos A . Using these inequalities we get (1 − sinA)(1 − sinB) < (1 − cos A)(1 − cos B)
and

sin A + sin B > cos A + cos B − cos A cos B + sin A sin B =

= cos A + cos B − cos(A + B) =

= cos A + cos B + cos C .

1



8. At the left-hand side of the equation we have the derivative of the function
f(x) = (x − a)(x − b)(x − c)(x − d)(x − e) which is continuous and has five distinct real
roots.

9. Studying the graphs of the functions aex and x3 it is easy to see that the equation has always
one solution if a 6 0 and can have 0 , 1 or 2 solutions if a > 0 . Moreover, in the case a > 0
the number of solutions can only decrease as a increases and we have exactly one positive
value of a for which the equation has one solution — this is the case when the graphs of aex

and x3 are tangent to each other, i.e. there exists x0 such that aex0 = x3

0
and aex0 = 3x2

0
.

From these two equations we get x0 = 3 and a =
27

e3
. Summarizing: the equation aex = x3

has one solution for a 6 0 and a =
27

e3
, two solutions for 0 < a <

27

e3
and no solutions for

a >
27

e3
.

10. We use the equality

sin 3◦ = sin(18◦ − 15◦) = sin 18◦ cos 15◦ + cos 18◦ sin 15◦

where sin 15◦ = sin
(30◦

2
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√
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√
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√
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4
. To calculate cos 18◦ and sin 18◦ note that

cos(3 · 18◦) = sin(2 · 18◦) . As cos 3x = cos3 x − 3 cos x sin2 x = cos x(1 − 4 sin2 x) and

sin 2x = 2 sin x cos x we get 1 − 4 sin2 18◦ = 2 sin 18◦ . Solving this quadratic equation yields

sin 18◦ =
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.

11. Among any ten integers a1 . . . an0 , a1 . . . an0 , . . . , a1 . . . an0 there are exactly five numbers
with odd sum of digits and five numbers with even sum of digits. Thus, among the integers
0, 1, . . . , 999 999 we have as many numbers with odd sum of digits as there are numbers with
even sum of digits. After substituting 1 000 000 instead of 0 we shall have more numbers with
odd sum of digits.

12. Assume there exists a renumeration such that for any numbers 1 6 k < l 6 n the segment
connecting vertices numbered k and l before the renumeration has a different colour than the
segment connecting vertices with the same numbers after the renumeration. Thus there has
to be an equal number of red and blue segments, i.e. the total number of segments should be
even. However, the number C2

1991
= 995 · 1991 is odd.

13. Define the distance between two small triangles to be the minimal number of steps one needs
to move from one of the triangles to the other (a step here means transition from one triangle
to another having a common side with it). The maximum distance between two small triangles
is 8 and this maximum is achieved if and only if one of these lies at a corner of the big triangle
and the other lies anywhere at the opposite side of it. Assume now that we have assigned the
numbers 1, . . . , 25 to the small triangles so that the difference of the numbers assigned to any
two adjacent triangles does not exceed 3 . Then the distance between the triangles numbered
1 and 25 ; 1 and 24 ; 2 and 25 ; 2 and 24 must be equal to 8 . However, this is not possible
since it implies that either the numbers 1 and 2 or 24 and 25 should be assigned to the
same “corner” triangle.

14. The knight can use the following strategy: exit from any hall through the door immediately
to the right of the one he used to enter that hall. Then, knowing which door was passed last
and in which direction we can uniquely restore the whole path of the knight up to that point.
Therefore, he will not be able to pass any door twice in the same direction unless he has been
outside the castle in between.
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15. Figure 1 demonstrates a possible king’s path passing through each square exactly once and
finally returning to the initial square. Thus, it suffices to prove part c) as we can always
increase the numbers on all the squares by 1 or 2 if necessary. Moreover, note that for any
given square it is possible to modify the path shown on Fig. 1 in such a way that this particular
square will be passed twice while any other square will still be passed exactly once. Repeating
this procedure a suitable number of times for each square we can make all the numbers on the
chessboard equal to each other.

16. Let P1, P2, P3 be the perpendicular projections of O1, O2, O3 to the line l and let Q be the
perpendicular projection of O3 to the line P1O1 (see Fig. 2). Then |QO3|2 = |O1O3|2−|QO1|2
and |P1P3|2 = (r1 + r3)

2 − (r1 − r3)
2 = 4r1r3 . Similarly we get |P1P2|2 = 4r1r2 and

|P2P3|2 = 4r2r3 . Since |P1P2| = |P1P3| + |P2P3| we have
√

r1r2 =
√

r1r3 +
√

r2r3 which
clearly implies the required equality.
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17. Let the velocity vector of the plane be ~v = (α, β, γ) . Reflection from each of the coordinate
planes changes the sign of exactly one of the coordinates α , β and γ , thus the final direction
will be opposite to the initial one.

18. No, it is not. Any tetrahedron that does not contain the centre of the sphere as an internal
point has a height drawn to one of its faces less or equal than the radius of the sphere, i.e. 1 .
As each of the faces of the tetrahedron is contained in a circle with radius not greater than 1 ,

its area cannot exceed
3
√

3

4
. Thus, the volume of such a tetrahedron must be less or equal

than
1

3
· 1 · 3

√
3

4
=

√
3

4
<

1

2
.

19. First, note that the three straight lines A1A2 , B1B2 and C1C2 intersect in a single point O .
Indeed, each of the lines is the locus of points from which the tangents to two of the circles are
of equal length (it is easy to check that this locus has the form of a straight line and obviously it
contains the two intersection points of the circles). Now, we have |OA1| · |OA2| = |OB1| · |OB2|
(as both of these products are equal to |OT |2 where OT is a tangent line to the circle contain-

ing A1, A2, B1, B2 and T is the corresponding point of tangency). Hence
|OA1|
|OB2|

=
|OB1|
|OA2|

which implies that the triangles OA1B2 and OB1A2 are similar and
|A1B2|
|A2B1|

=
|OA1|
|OB1|

. Sim-

ilarly we get
|B1C2|
|B2C1|

=
|OB1|
|OC1|

and
|C1A2|
|C2A1|

=
|OC1|
|OA1|

. It remains to multiply these three

equalities.

20. We have A
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. Computing the coordinates of

~v = |OC| ·−→AC + |AC| ·−−→OC we find that the vector ~v — and hence also the bisector of the angle
6 OCA — is parallel to the x-axis. Since |OA| = |AC| this yields 6 AOC = 6 ACO = 2· 6 COx

(see Fig. 3) and 6 AOx = 6 AOC + 6 COx = 3 · 6 COx .
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