
“Baltic Way – 90” mathematical team contest

Riga, November 24, 1990

Hints and solutions

1. Let a1 = 1, a2, . . . , ak = n, ak+1, . . . , an be the order in which the numbers 1, 2, . . . , n are
written around the circle, then the sum of moduli of the differences of the neighbouring numbers
is

|1−a2|+|a2−a3|+. . .+|ak−n|+|n−ak+1|+. . .+|an−1| >

> |1−a2+a2−a3+. . .+ak−n|+|n−ak+1+. . .+an−1| =

= |1 − n| + |n − 1| = 2n − 2 .

This minimum is achieved if the numbers are written around the circle in increasing order.

2. Since the square with the coordinates (m,n) is n-th on the (n+m−1)-th diagonal, it contains
the number

P (m,n) =

n+m−2∑
i=1

i + n =
(n + m − 1)(n + m − 2)

2
+ n .

3. Obviously we can find angles 0 < α, β < 90◦ such that tanα > 0 , tan (α + β) > 0 , . . . ,
tan (α+1989β) > 0 but tan (α+1990β) < 0 . Now it suffices to note that if we take a0 = tan α
and c = tan β then an = tan (α + nβ) .

4. Consider the polynomial P (x) = a1 + a2x + . . . + anxn−1 , then P 2(x) =

n∑
k,l=1

akalx
k+l−2 and

∫ 1

0

P 2(x) =
n∑

k,l=1

akal

k + l − 1
.

5. A suitable equation is x ∗ (x ∗ x) = (x ∗ x) ∗ x which is obviously true if ∗ is any commutative
or associative operation but does not hold in general, e.g. 1 − (1 − 1) 6= (1 − 1) − 1 .

6. Note that 6 ADC + 6 CDP + 6 BCD + 6 DCP = 360◦ (see Fig. 1). Thus
6 ADP = 360◦ − 6 BCD − 6 DCP = 6 BCP . As we have |DP | = |CP | and |AD| = |BC|
then the triangles ADP and BCP are congruent and |AP | = |BP | . Moreover, 6 APB = 60◦

since 6 DPC = 60◦ and 6 DPA = 6 CPB .

7. It suffices to show that the centre of gravity of the pentagon (viewed as a system of five equal
masses placed at its vertices) lies on each of the five segments. To prove that, divide this system
of masses into two subsystems, one of which consists of the two masses at the endpoints of the
side under consideration and the other consists of the three remaining masses at the vertices
of the triangle. The segment mentioned in the problem connects the centres of gravity of these
two subsystems, hence it contains the centre of gravity of the whole system.

8. Let O be the circumcentre of the triangle ABC and 6 B be its maximal angle (so that 6 A
and 6 C are necessarily acute). Further, let B1 and C1 be the basepoints of the perpendiculars
drawn from the point P to the sides AC and AB respectively and let α be the angle between
the Simpson line l of point P and the height h of the triangle drawn to the side AC . It is

sufficient to prove that α =
1

2
6 POB . To show this, first note that the points P, C1, B1, A all

belong to a certain circle. Now we have to consider several subcases depending on the order of
these points on that circle and the location of point P on the circumcircle of triangle ABC .

Fig. 2 shows one of these cases — here we have α = 6 PB1C1 = 6 PB1C1 = 6 PAB =
1

2
6 POB .

The other cases can be treated in a similar manner.
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9. No, not necessarily (see Fig. 3 where the two ellipses are equal).

10. The point A can move to any distance from its initial position — see Fig. 4 and note that we
can make the height h arbitrarily small.
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Figure 4

11. For a polynomial P (x) = anxn + . . . + a1x + a0 with integer coefficients let k be the smallest

index such that ak 6= 0 , i.e. in fact P (x) = anxn + . . . + akxk . If c is an integer root of P (x)

then P (x) = (x− c) ·Q(x) where Q(x) = bn−1x
n−1 + . . . + bkxk is a polynomial with integer

coefficients, an = bn−1 and ak = −bk · c . Since ak 6= 0 we have bk 6= 0 and |c| 6 |ak| .

12. Use the equality 2 · (25x + 3y) + 11 · (3x + 7y) = 83x + 83y .

13. For any solution (m,n) of the equation we have m2 − 7n2 = 1 and

1 = (m2 − 7n2)2 = (m2 + 7n2)2 − 7 · (2mn)2 , hence (m2 + 7n2, 2mn) is also a solu-

tion. Therefore it is sufficient to note that the equation x2 − 7y2 = 1 has at least one solution,
e.g. x = 8 , y = 3 .

14. Such numbers do exist. Let M = 1990! and consider the sequence of numbers 1+M , 1+2M ,
1+3M , . . . . For any natural number 2 6 k 6 1990 any sum S of exactly k of these numbers
(not necessarily different) is divisible by k < S and hence a composite number. It remains to
show that we can choose 1990 numbers a1, . . . , a1990 from this sequence which are relatively
prime. Indeed, let a1 = 1 + M , a2 = 1 + 2M and for a1, . . . , an already chosen take
an+1 = 1 + a1 · . . . · an · M .

15. Assume there exist such natural numbers k and n that 22
n

+ 1 = k3 . Then k must be

an odd number and we have 22
n

= k3 − 1 = (k − 1)(k2 + k + 1) . Hence k − 1 = 2s and

k2 + k + 1 = 2t where s and t are some natural numbers. Now 22s = (k − 1)2 = k2 − 2k + 1

and 2t − 22s = 3k , but 2t − 22s is even while 3k is odd, a contradiction.

16. There must be an equal number of horizontal and vertical links, hence it suffices to show that
the number of vertical links is even. Let’s pass the whole polygonal line in a chosen direction
and mark each vertical link as “up” or “down” according to the direction we pass it. As the
sum of lengths of the “up” links is equal to that of the “down” ones and each link is of odd
length then we have an even or odd number of links of both kinds depending on the parity of
the sum of their lengths.

17. Note that one of the players must have a “winning” strategy. Assume it is the player making
the second move who has it, then his strategy will assure taking the last sweet also in the case
when the beginner takes 2 · 30 sweets as his first move. But now, if the beginner takes 1 · 30
sweets then the second player has no choice but to take another 30 sweets from the same pile,
and hence the beginner can use the same strategy to assure taking the last sweet himself. This
contradiction shows that it must be the beginner who has the “winning” strategy.
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18. Let ak denote the total number of rows and columns containing the number k at least once.
As i · (20 − i) < 101 for any natural number i we have ak > 21 for all k = 1, 2, . . . , 101 .
Hence a1 + . . . + a101 > 21 · 101 = 2121 . On the other hand, assuming any row and column
contains no more than 10 different numbers we have a1 + . . . + a101 6 202 · 10 = 2020 , a
contradiction.

19. Consider any subsets A1, . . . , As satisfying the condition of the problem and let
Ai = { ai1, . . . , ai,ki

} where ai1 < . . . < ai,ki
. Replacing each Ai by

A′
i = { ai1, ai1 + 1, . . . , ai,ki

− 1, ai,ki
} (i.e. adding to it all “missing” numbers) yields a

collection of different subsets A′
1, . . . , A′

s which also satisfies the required condition. Now,
let bi and ci be the smallest and largest elements of the subset A′

i respectively, then
min

16i6s
ci > max

16i6s
bi as otherwise some subsets A′

k and A′
l would not intersect. Hence there

exists an element a ∈
⋂

16i6s

A′
i . As the number of subsets of the set { 1, 2, . . . , 2n + 1 } con-

taining a and consisting of k consequtive integers does not exceed min (k, 2n + 2 − k) we

have s 6 (n + 1) + 2 · (1 + 2 + . . . + n) = (n + 1)2 . This maximum will be reached if we take
a = n + 1 .
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