
Baltic Way 2020

Official solutions

Problem 1. Let a0 > 0 be a real number, and let

an = an−1√
1 + 2020 · a2

n−1

, for n = 1, 2, . . . , 2020.

Show that a2020 <
1

2020 .
S o l u t i o n.

Let bn = 1
a2
n

. Then b0 = 1
a2

0
and

bn = 1 + 2020 · a2
n−1

a2
n−1

= bn−1

(
1 + 2020 · 1

bn−1

)
= bn−1 + 2020.

Hence b2020 = b0 +20202 = 1
a2

0
+20202 and a2

2020 = 1
1

a2
0

+20202 <
1

20202 which shows that a2020 <
1

2020 .

Problem 2. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a
√
c2 + 1

+ 1
b
√
a2 + 1

+ 1
c
√
b2 + 1

> 2.

S o l u t i o n.
Denote a = x

y
, b = y

z
, c = z

x
. Then

1
a
√
c2 + 1

= 1
x
y

√
z2

x2 + 1
= y√

z2 + x2
>

2y2

x2 + y2 + z2

where the last inequality follows from the AM-GM inequality

y
√
x2 + z2 6

y2 + (x2 + z2)
2 .

If we do the same estimation also for the two other terms of the original inequality then we get

1
a
√
c2 + 1

+ 1
b
√
a2 + 1

+ 1
c
√
b2 + 1

>
2y2

x2 + y2 + z2 + 2z2

x2 + y2 + z2 + 2x2

x2 + y2 + z2 = 2.

Equality holds only if y2 = x2 + z2, z2 = x2 + y2 and x2 = y2 + z2 what is impossible.
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Problem 3. A real sequence (an)∞n=0 is defined recursively by a0 = 2 and the recursion formula

an =


a2
n−1 if an−1 <

√
3

a2
n−1
3 if an−1 >

√
3.

Another real sequence (bn)∞n=1 is defined in terms of the first by the formula

bn =


0 if an−1 <

√
3

1
2n if an−1 >

√
3,

valid for each n > 1. Prove that

b1 + b2 + · · ·+ b2020 <
2
3 .

S o l u t i o n.
The first step is to prove, using induction, the formula

an = 22n

32n(b1+b2+···+bn) .

The base case n = 0 is trivial. Assume the formula is valid for an−1, that is,

an−1 = 22n−1

32n−1(b1+b2+···+bn−1) .

If now an−1 <
√

3, then bn = 0, and so

an = a2
n−1 = 22n

32n(b1+b2+···+bn−1) = 22n

32n(b1+b2+···+bn−1+bn) ,

whereas if an−1 >
√

3, then bn = 1
2n , and so

an = a2
n−1
3 = 22n

32n(b1+b2+···+bn−1)+1 = 22n

32n(b1+b2+···+bn−1+bn) .

This completes the induction.
Next, we inductively establish the inequality an > 1. The base case n = 0 is again trivial.

Suppose an−1 > 1. If an−1 <
√

3, then

an = a2
n−1 > 12 = 1,

whereas if an−1 >
√

3, then

an = a2
n−1
3 >

(
√

3)2

3 = 1,

and the induction is complete.
From

1 6 an = 22n

32n(b1+b2+···+bn) =
( 2

3b1+b2+···+bn

)2n

,

we may then draw the conclusion
3b1+b2+···+bn 6 2.
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Since 32/3 > 2 (and the function x 7→ 3x is strictly increasing), we must have

b1 + b2 + · · ·+ bn <
2
3

for all n, and we are finished.
Remark. Using only slightly more work, it may be proved that

1 6 an = 22n

32n(b1+b2+···+bn) < 3,

which entails
1 1

2n 6
2

3b1+b2+···+bn
< 3 1

2n

for all n, hence
3b1+b2+··· = 2.

The problem thus provides an algorithm for calculating

b1 + b2 + · · · = log3 2 ≈ 0.63

in binary.

Problem 4. Find all functions f : R→ R so that

f(f(x) + x+ y) = f(x+ y) + yf(y)

for all real numbers x, y.
S o l u t i o n 1.

Answer: f(x) = 0 for all x.
We first notice that if there exists a number α so that f(α) = 0, then f(α + y) =

f(f(α) + α + y) = f(α + y) + yf(y) for all real y. Hence yf(y) = 0 for all y, meaning
that f(y) = 0 for all y 6= 0. We are therefore done if we can show that f(0) = 0, as then
f(x) = 0 for all x, which is a solution.

Substituting y = 0 in the equation yields that:

f(f(x) + x) = f(x) ∀x (1)

Substituting y = f(x) in the equation yields that:

f(f(x) + x+ f(x)) = f(x+ f(x)) + f(x)f(f(x)) (2)

Let z = x+ f(x). Then:

f(x) = f(x+ f(x)) = f(z) = f(f(z) + z) by (1)
= f(f(x+ f(x)) + x+ f(x))
= f(f(x) + x+ f(x)) by (1)
= f(x+ f(x)) + f(x)f(f(x)) by (2)
= f(x) + f(x)f(f(x)) by (1)

Hence f(x)f(f(x)) = 0 for all x. Letting x = 0 in (1), we get that f(f(0)) = f(0), which means
that f(0)2 = f(0)f(f(0)) = 0. But then we must have f(0) = 0.
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S o l u t i o n 2.
Substitute x = 0 and y = −1. We obtain f(f(0)− 1) = f(−1) + (−1) · f(−1) = 0.
Substitute x = f(0)− 1. Then f(x) = 0 and therefore f(f(x) + x+ y) and f(x+ y) cancel

out. We obtain 0 = yf(y) for all y. It follows that if y 6= 0 then f(y) = 0.
Now, substitute x = y = 0. We obtain f(f(0)) = f(0). Substituting y = f(0) to 0 = yf(y)

yields f(0)f(f(0)) = 0, which means f(0)2 = 0, and finally f(0) = 0.
Therefore f(x) = 0 for all x, which clearly satisfies the equation.

Problem 5. Find all real numbers x, y, z so that

x2y + y2z + z2 = 0

z3 + z2y + zy3 + x2y = 1
4(x4 + y4)

S o l u t i o n.
Answer: x = y = z = 0.
y = 0 =⇒ z2 = 0 =⇒ z = 0 =⇒ 1

4x
4 = 0 =⇒ x = 0. x = y = z = 0 is a solution,

so assume that y 6= 0. Then z = 0 =⇒ x2y = 0 =⇒ x = 0 =⇒ 1
4y

4 = 0, which is a
contradiction. Hence z 6= 0. Now we solve the quadratic (first) equation w.r.t. x, y, and z.

x = ±
√
−4y3z − 4yz2

2y

y = −x
2 ±
√
x4 − 4z3

2z

z = −y
2 ±
√
y4 − 4x2y

2
The discriminants must be non-negative.

−4y3z − 4yz2 > 0

x4 − 4z3 > 0
y4 − 4x2y > 0

Adding the inequalities we get

y4 − 4x2y + x4 − 4z3 − 4y3z − 4yz2 > 0

1
4(x4 + y4) > z3 + z2y + zy3 + x2y

But equation 2 says that 1
4(x4 + y4) = z3 + z2y + zy3 + x2y. This is only possible if all of the

inequalities are in fact equalities, so we have

−4y3z − 4yz2 = 0

x4 − 4z3 = 0
y4 − 4x2y = 0

This means that x = ±
√

0
2y = 0 =⇒ y = −02 ±

√
0

2z = 0, which is a contradiction. Hence the
only solution is x = y = z = 0.
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Problem 6. Let n > 2 be a given positive integer. There are n guests at Georg’s bachelor
party and each guest is friends with at least one other guest. Georg organizes a party game
among the guests. Each guest receives a jug of water such that there are no two guests with the
same amount of water in their jugs. All guests now proceed simultaneously as follows. Every
guest takes one cup for each of his friends at the party and distributes all the water from his
jug evenly in the cups. He then passes a cup to each of his friends. Each guest having received
a cup of water from each of his friends pours the water he has received into his jug. What is the
smallest possible number of guests that do not have the same amount of water as they started
with?
S o l u t i o n.

Answer: 2.
If there are guests 1, 2, . . . , n and guest i is friends with guest i− 1 and i+ 1 modulo n (e.g.

guest 1 and guest n are friends). Then if guest i has i amount of water in their jug at the start
of the game, then only guest 1 and n end up with a different amount of water than they started
with.

To show that there always will be at least two guests with a different amount of water at the
end of the game than they started with, let xi and di be the amount of water and number of
friends, respectively, that guest i has. Define zv = xv/dv and assume without loss of generality
that the friendship graph of the party is connected. Since every friend has at least one friend,
there must exist two guests a and b at the party with the same number of friends by the
pigeonhole principle. They must satisfy za 6= zb. Thus, the sets

S = {c | zc = min
d
zd} and T = {c | zc = max

d
zd}

are non-empty and disjoint. Since we assumed the friendship graph to be connected, there exists
a guest c ∈ S that has a friend d not in S. Let F be the friends of c at the party. Then the
amount of water in c’s cup at the end of the game is∑

f∈F
zf > zd + (dc − 1)zc > dc · zc = xc.

Thus, c ends up with a different amount of water at the end of the game. Similarly, there is a
guest in T that ends up with a different amount of water at the end of the game than what
they started with.

Problem 7. A mason has bricks with dimensions 2× 5× 8 and other bricks with dimensions
2 × 3 × 7. She also has a box with dimensions 10 × 11 × 14. The bricks and the box are all
rectangular parallelepipeds. The mason wants to pack bricks into the box filling its entire
volume and with no bricks sticking out. Find all possible values of the total number of bricks
that she can pack.
S o l u t i o n.

Answer: 24.
Let the number of 2× 5× 8 bricks in the box be x, and the number of 2× 3× 7 bricks y. We

must figure out the sum x+ y. The volume of the box is divisible by 7, and so is the volume of
any 2× 3× 7 brick. The volume of a 2× 5× 8 brick is not divisible by 7, which means that x
must be divisible by 7.

The volume of the box is 10 · 11 · 14. The volume of the 2 × 5 × 8 bricks in the box is
x · 2 · 5 · 8 = 80 x. Since this volume cannot exceed the volume of the box, we must have

x 6
10 · 11 · 14

80 = 11 · 7
4 = 77

4 < 20.
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Since x was divisible by 7, and certainly nonnegative, we conclude that x must be 0, 7 or 14.
Let us explore each of these possibilities separately.

If we had x = 0, then the volume of the 2× 3× 7 bricks, which is y · 2 · 3 · 7, would be equal
to the volume of the box, which is 10 · 11 · 14. However, this is not possible since the volume of
the 2× 3× 7 bricks is divisible by three whereas the volume of the box is not. Thus x must be
7 or 14.

If we had x = 7, then equating the total volume of the bricks with the volume of the box
would give

7 · 2 · 5 · 8 + y · 2 · 3 · 7 = 10 · 11 · 14,
so that

y · 2 · 3 · 7 = 10 · 11 · 14− 7 · 2 · 5 · 8 = 1540− 560 = 980.
However, again the left-hand side, the volume of the 2 × 3 × 7 bricks, is divisible by three,
whereas the right-hand side, 980, is not. Thus we cannot have have x = 7 either, and the only
possibility is x = 14.

Since x = 14, equating the volumes of the bricks and the box gives

14 · 2 · 5 · 8 + y · 2 · 3 · 7 = 10 · 11 · 14,

which in turn leads to

y · 2 · 3 · 7 = 10 · 11 · 14− 14 · 2 · 5 · 8 = 1540− 1120 = 420,

so that
y = 420

2 · 3 · 7 = 420
42 = 10.

Thus the number of bricks in the box can only be 14 + 10 = 24. Finally, for completeness, let us
observe that 14 bricks with dimensions 2× 5× 8 can be used to fill a volume with dimensions
10× 8× 14, and 10 bricks with dimensions 2× 3× 7 can be used to fill a volume with dimensions
10× 3× 14, so that these 24 bricks can indeed be packed in the box.

Problem 8. Let n be a given positive integer. A restaurant offers a choice of n starters, n
main dishes, n desserts and n wines. A merry company dines at the restaurant, with each guest
choosing a starter, a main dish, a dessert and a wine. No two people place exactly the same
order. It turns out that there is no collection of n guests such that their orders coincide in
three of these aspects, but in the fourth one they all differ. (For example, there are no n people
that order exactly the same three courses of food, but n different wines.) What is the maximal
number of guests?
S o l u t i o n.

Answer: The maximal number of guests is n4 − n3.
The possible menus are represented by quadruples

(a, b, c, d), 1 6 a, b, c, d 6 n.

Let us count those menus satisfying

a+ b+ c+ d 6≡ 0 (mod n).

The numbers a, b, c may be chosen arbitrarily (n choices for each), and then d is required to
satisfy only d 6≡ −a− b− c. Hence there are

n3(n− 1) = n4 − n3
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such menus.
If there are n4 − n3 guests, and they have chosen precisely the n4 − n3 menus satisfying

a+ b+ c+ d 6≡ 0 (mod n), we claim that the condition of the problem is fulfilled. So suppose
there is a collection of n people whose orders coincide in three aspects, but differ in the fourth.
With no loss of generality, we may assume they have ordered exactly the same food, but n
different wines. This means they all have the same value of a, b and c, but their values of d are
distinct. A contradiction arises since, given a, b and c, there are only n− 1 values available for
d.

We now show that for n4 − n3 + 1 guests (or more), it is impossible to obtain the situation
stipulated in the problem. The n3 sets

Ma,b,c = {(a, b, c, d) | 1 6 d 6 n}, 1 6 a, b, c 6 n,

form a partition of the set of possible menus, totalling n4. When the number of guests is at
least n4− n3 + 1, there are at most n3− 1 unselected menus. Therefore, there exists a set Ma,b,c

which contains no unselected menus. That is, all the n menus in Ma,b,c have been selected, and
the condition of the problem is violated.

Problem 9. Each vertex v and each edge e of a graph G are assigned numbers f(v) ∈ {1, 2}
and f(e) ∈ {1, 2, 3}, respectively. Let S(v) be the sum of numbers assigned to the edges incident
to v plus the number f(v). We say that an assignment f is cool if S(u) 6= S(v) for every pair
(u, v) of adjacent (i.e. connected by an edge) vertices in G. Prove that for every graph there
exists a cool assignment.
S o l u t i o n.

Let v1, v2, . . . , vn be any ordering of the vertices of G. Initially each vertex assigned number
1, and each edge assigned number 2. One may imagine that there is a chip lying on each vertex,
while two chips are lying on each edge. We are going to refine this assignment so as to get
a cool one by performing the following greedy procedure. To explain what we do in the ith
step, denote by x1, x2, . . . , xk denote all neighbours of vi with lower index, and let ej = vixj,
with j = 1, 2, . . . , k, denote the corresponding backward edges. For each edge ej we have two
possibilities:

(a) if there is only one chip on xj, then we may move one chip from ej to xj or do nothing;

(b) if there are two chips on xj we may move one chip from xj to ej or do nothing.

Notice that none of the sums S(xj) may change as a result of such action. Also, any action on
each edge may change the total sum for vi just by one. Hence there are k + 1 possible values for
S(vi). So, at least one combination of chips gives a sum which is different from each of S(xj).
We fix this combination and go to the next step.

To see that this algorithm ends in a desired configuration, note the following:

• by the definition of the steps, no vertex value ever leaves the set {1, 2};

• each edge vmvi with m < i is only considered at step i, so its value may change only once,
staying in 2 + {−1, 0,+1} = {1, 2, 3};

• S(vi) can only change in the i-th step, when it is made to differ from all S(vm) with m < i
and vmvi being an edge – hence all neighbouring pairs of values S(·) will end up being
different.
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Problem 10. Alice and Bob are playing hide and seek. Initially, Bob chooses a secret fixed
point B in the unit square. Then Alice chooses a sequence of points P0, P1, . . . , PN in the plane.
After choosing Pk (but before choosing Pk+1) for k > 1, Bob tells “warmer” if Pk is closer to
B than Pk−1, otherwise he says “colder”. After Alice has chosen PN and heard Bob’s answer,
Alice chooses a final point A. Alice wins if the distance AB is at most 1

2020 , otherwise Bob wins.
Show that if N = 18, Alice cannot guarantee a win.

S o l u t i o n.
Let S0 be the set of all points in the square, and for each 1 6 k 6 N , let Sk be the set

of possible points B consistent with everything Bob has said. For each k, we then have that
Sk is the disjoint union of the two possible values Sk+1 can take for each of Bob’s possible
answers. Hence once of these must have area 6 |Sk+1|

2 , and the other must have area > |Sk+1|
2 .

Suppose now that Alice always receives the answer resulting in the greater half. After receiving
N answers, then, |SN | > 1

2N . If Alice has a winning strategy, there must be a point A in SN so
that the circle of radius 1

2020 centered at A contains SN . Hence π
20202 > 1

2N . It therefore suffices
to show that this inequality does not hold for N = 18. This follows from the estimates π 6 22

and 2020 > 1024 = 210, meaning that π
20202 >

22

220 = 1
218 .

Comment. In fact, it also holds for N = 20, but this requires some more estimation work
to show by hand. Also, there is a winning strategy for N = 22, where the square is dissected
into right isosceles triangles of successively smaller sizes. This can evidently always be done
exactly by choosing Pk outside the square. It also seems possible to do this for Pk restricted to
the interior of the square, but is harder to write up precisely.

Problem 11. Let ABC be a triangle with AB > AC. The internal angle bisector of ∠BAC
intersects the side BC at D. The circles with diameters BD and CD intersect the circumcircle
of 4ABC a second time at P 6= B and Q 6= C, respectively. The lines PQ and BC intersect at
X. Prove that AX is tangent to the circumcircle of 4ABC.

S o l u t i o n 1.
The key observation is that the circumcircle of 4DPQ is tangent to BC. This can be proved

by angle chasing:

]BDP = 90◦ − ]PBD = 90◦ − ]PBC = 90◦ − (180◦ − ]CQP )
= ]CQP − 90◦ = ]DQP.

Now let the tangent to the circumcircle of 4ABC at A intersect BC at Y . It is well-known (and
easy to show) that Y A = Y D. This implies that Y lies on the radical axis of the circumcircles
of 4ABC and 4PDQ, which is the line PQ. Thus Y ≡ X, and the claim follows.

S o l u t i o n 2.
Apply an inversion with center D. Let A′ denote the image of point A, etc. Then ]C ′B′A′ =

]DB′A′ = ]BAD = ]DAC = ]A′C ′D = ]A′C ′B′, which means that the triangle 4A′B′C ′ is
isosceles at A′. The images of the circles with diameters BD and CD are the lines perpendicular
to B′C ′ through B′ and C ′, respectively, and P ′, Q′ are the second intersections of these lines
with the circumcircle of 4A′B′C ′.
Now let ρ denote the reflection with respect to the perpendicular bisector of B′C ′. By symmetry,
ρ maps the circumcircle of 4A′B′C ′ to itself and swaps B′, C ′, thus it follows that ρ swaps P ′
and Q′. The point X ′ is the second intersection of the circumcircle of 4DP ′Q′ with B′C ′. Since
ρ maps the line B′C ′ to itself, this implies that ρ swaps D and X ′. By symmetry, this yields
that the circumcircles of 4A′B′C ′ and 4A′DX ′ are tangent at A′, which is what we needed to
show.
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S o l u t i o n 3.
Define Y as in the first solution. Since Y D2 = Y A2 = Y B · Y C, it follows that the inversion

with center Y and radius Y D swaps B and C. Since inversion preserves angles, this implies that
the circles with diameters BD and CD are mapped to each other. Moreover, the circumcircle
of 4ABC is mapped to itself. This implies that P and Q are swapped under the inversion, and
therefore P,Q, Y are collinear.

Problem 12. Let ABC be a triangle with circumcircle ω. The internal angle bisectors of
∠ABC and ∠ACB intersect ω at X 6= B and Y 6= C, respectively. Let K be a point on CX
such that ∠KAC = 90◦. Similarly, let L be a point on BY such that ∠LAB = 90◦. Let S be
the midpoint of arc CAB of ω. Prove that SK = SL.
S o l u t i o n 1.

W.l.o.g. let AB < AC. We will prove that triangles KXS and SY L are congruent by SAS,
which will finish the proof.

As BX and CY are angle bisectors, we obtain:

1
2

_

CAB =
_

CXS =
_

CX +
_

XS = 1
2

_

CXA +
_

XS .

This implies
_

XS = 1
2

_

AY B =
_

Y B and therefore SX = Y B. Note that BY = Y A, hence Y
is the midpoint of the hypotenuse BL in 4ABL. Thus SX = Y B = Y L. Similarly, we get
SY = XK.

Finally, as S is the midpoint of arc
_

CAB, we obtain ∠SXC = ∠BY S, thus ∠KXS = ∠SY L,
finishing the proof of congruency.
S o l u t i o n 2.

Let I be the incenter of4ABC. It is well-known that AY = BY = IY and AX = CX = IX.
By Thales, this implies that Y is the midpoint of BL and X is the midpoint of CK. In particular,
IY = LY and IX = KX.

Next, observe that ]SY L = 180◦ − ]BY S = ]SCB = ]CBS = ]CY S = ]IY S, which
means that SY is the angle bisector of ∠IY L. Since IY = LY , this implies that IS = LS.
Analogously, we can show that IS = KS, which completes the proof.
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Problem 13. Let ABC be an acute triangle with circumcircle ω. Let ` be the tangent line to
ω at A. Let X and Y be the projections of B onto lines ` and AC, respectively. Let H be the
orthocenter of BXY . Let CH intersect ` at D. Prove that BA bisects angle CBD.
S o l u t i o n 1.

A

B C

D

X

Y

H

`

Note that XH ⊥ BY ⊥ AC and Y H ⊥ BX ⊥ AD. Therefore XH ‖ AC and Y H ‖ AD.
It follows that

AD

AX
= CD

CH
= CA

CY
=⇒ AD

CA
= AX

CY
= AB cos∠XAB
CB cos∠Y CB .

Since ` is tangent to ω, we have ∠XAB = ∠Y CB. Thus the cosines in the equality above
cancel out and we obtain

AD

CA
= AB

CB
.

This, along with ∠DAB = ∠ACB, proves that 4DAB ∼ 4ACB by SAS. Therefore ∠CBA =
∠ABD. This shows that BA bisects angle CBD.
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S o l u t i o n 2.
Let D′ be a point on ` such that ∠CBA = ∠ABD′. Let Z and T be projections of A onto

BC and BD′, respectively. Note that the circle with diameter AB passes through X, Y, Z, T .
By Pascal’s theorem for hexagon AXZBTY , points D′, C, and H ′ := XZ ∩ TY are collinear.

A

B C

D′

X

Y

H ′

`

Z

T

We have
∠XZB = ∠XAB = ∠CAB = 90◦ − ∠ZBY

which shows that XZ ⊥ BY .
By definition of D′,

∠BD′A = 180◦ − ∠D′AB − ∠ABD′ = 180◦ − ∠ACB − ∠CBA = ∠BAC.

Therefore
∠D′AT = 90◦ − ∠TD′A = 90◦ − ∠BAC,

hence
∠XY T + ∠BXY = ∠XAT + ∠BAY = 90◦ − ∠BAC + ∠BAC = 90◦.

This shows that Y T ⊥ BX.
Since XZ ⊥ BY and Y T ⊥ BX, it follows that H ′ is the orthocenter of BXY , i.e. H ′ = H.

Since D′, C,H ′ are collinear and D′ lies on `, it follows that D′ = D. Therefore ∠ABD = ∠CBA
and we are done.

Problem 14. An acute triangle ABC is given and let H be its orthocenter. Let ω be the
circle through B, C and H, and let Γ be the circle with diameter AH. Let X 6= H be the other
intersection point of ω and Γ, and let γ be the reflection of Γ over AX.

Suppose γ and ω intersect again at Y 6= X, and line AH and ω intersect again at Z 6= H.
Show that the circle through A, Y, Z passes through the midpoint of segment BC.
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S o l u t i o n.
Let M be the midpoint of BC. We first show that X lies on AM . Consider A′, the reflection

of A across M . As ABA′C is a parallelogram, we have that ∠BA′C = ∠BAC = 180◦−∠BHC,
which in turn gives us that A′ lies on ω. Now ∠HBA′ = ∠HBC+∠CBA′ = ∠HBC+∠ACB =
90◦. Hence HA is a diameter of ω. In particular we must have ∠HXA′ = 90◦. Consequently
∠AXA′ = ∠AXH + ∠HXA′ = 90◦ + 90◦ = 180◦, i.e. A,X,A′ are collinear. But A,M,A′

collinear by definition, hence X lies on the A-median.
Now it suffices to show that ∠AY Z = ∠AMZ. We note the two following facts:

• ∠AHX = ∠AYX, since ω and Γ have the same radius and the two angles span the same
chord AX.

• ω is the reflection of the circumcircle of ABC across BC. That gives us that Z is the
reflection of A across D, the feet of the A-altitude to BC.

Hence we can write: ∠AY Z = ∠AYX+∠XY Z = ∠AHX+ (180◦−∠XHZ) = 2∠AHX =
2∠AMD = ∠AMZ, which is what we wanted.

Problem 15. On a plane, Bob chooses 3 points A0, B0, C0 (not necessarily distinct) such
that A0B0 + B0C0 + C0A0 = 1. Then he chooses points A1, B1, C1 (not necessarily distinct)
in such a way that A1B1 = A0B0 and B1C1 = B0C0. Next he chooses points A2, B2, C2 as
a permutation of points A1, B1, C1. Finally, Bob chooses points A3, B3, C3 (not necessarily
distinct) in such a way that A3B3 = A2B2 and B3C3 = B2C2. What are the smallest and the
greatest possible values of A3B3 +B3C3 + C3A3 Bob can obtain?

S o l u t i o n.
Answer: 1

3 and 3.
Denote the lengths A0B0, B0C0, C0A0 by x, y, z in non-increasing order. Similarly, denote

the lengths A1B1, B1C1, C1A1 by x′, y′, z′ in non-increasing order, and the lengths A3B3, B3C3,
C3A3 by x′′, y′′, z′′ in non-increasing order. (As permuting the points does not change the
distances, we do not need a separate vector for A2B2, B2C2, C2A2.) Then we have x+ y+ z = 1,
y + z > x, y′ + z′ > x′, y′′ + z′′ > x′′. By construction, triples (x, y, z) and (x′, y′, z′) have
two values in common (but not necessarily at corresponding places), similarly (x′, y′, z′) and
(x′′, y′′, z′′) have two values in common.

Using these observations, calculate:

x′′ + y′′ + z′′ 6 2(y′′ + z′′) 6 2(x′ + y′) 6 2(y′ + y′ + z′)
6 2(x+ x+ y) 6 6x 6 3(x+ y + z) = 3.

We can achieve the value 3 as follows. Let A0B0 = 1
2 and C0 = A0. Let A1 = A0,

B1 = B0 and −−−→B1C1 = −−−−→B0C0. Let A2 = A1 and B2 = C1, C2 = B1. Finally, let A3 = A2,
B3 = B2 and −−−→B3C3 = −−−−→B2C2. By construction, A3B3 = 1, B3C3 = 1

2 and C3A3 = 3
2 , so

A3B3 +B3C3 + C3A3 = 3.
This establishes the upper bound. For the lower bound, note that all steps are reversible

and the 3-step process itself is symmetric. By scaling, we can also make the initial configuration
to satisfy the conditions of the problem. Hence all processes satisfying the conditions of the
problem and achieving a final value t are in one-to-one correspondence with processes satisfying
the conditions of the problem and achieving the final value 1

t
. This shows that the lower bound

is 1
3 .
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Problem 16. Richard and Kaarel are taking turns to choose numbers from the set {1, . . . , p−1}
where p > 3 is a prime. Richard is the first one to choose. A number which has been chosen
by one of the players cannot be chosen again by either of the players. Every number chosen
by Richard is multiplied with the next number chosen by Kaarel. Kaarel wins the game if at
any moment after his turn the sum of all of the products calculated so far is divisible by p.
Richard wins if this does not happen, i.e. the players run out of numbers before any of the sums
is divisible by p. Can either of the players guarantee their victory regardless of their opponent’s
moves and if so, which one?

S o l u t i o n 1.
Answer: Yes, Kaarel.
Let us split the numbers in the set to the following pairs: (1, p− 1), (2, p− 2), . . . , (p−1

2 , p+1
2 ).

If Richard chooses some number a, then let Kaarel choose the other number from the pair i.e.
p− a. This forces Richard to choose a number from a pair in which both of the numbers have
not been chosen yet and hence Kaarel can make his desired move. The residues modulo p of
the products are of the form −a2. The residue of the sum of all the products is congruent to
−
(

12 + 22 + . . .+
(
p−1

2

)2
)
. For every natural number n, we have 12+22+. . .+n2 = n(n+1)(2n+1)

6 ,

therefore 12 + 22 + . . . +
(
p−1

2

)2
= (p−1)p(p+1)

24 . This must be an integer and as p and 24 are
coprime, (p−1)p(p+1)

24 must be divisible by p. Therefore, when the last number is chosen from the
set, the sum of the products is divisible by p.

S o l u t i o n 2.
If Richard initially chooses some number x, then Kaarel chooses p − x as above (distinct

from x as p is odd). Since p− 1 > 2, there are still numbers left, so the game continues.
If next Richard chooses y as his second number, then Kaarel wins by choosing the unique

number 1 6 a 6 p− 1 congruent to x2 · y−1 modulo p. In order for Kaarel’s second move to be
legal, we must confirm that a is different from x, −x and y modulo p.

If a ≡ x (mod p), then y ≡ x (mod p) contradicting Richards second move. If a ≡ −x
(mod p), then y ≡ −x (mod p) also contradicting Richards second move. Finally, if a ≡ y
(mod p), then x2 ≡ y2 (mod p) implying y ≡ ±x (mod p) with the same contradictions once
more.

We conclude that a is distinct from the previous numbers, and x · (p−x) + y ·a ≡ 0 (mod p),
so Kaarel wins.

Problem 17. For a prime number p and a positive integer n, denote by f(p, n) the largest
integer k such that pk | n!. Let p be a given prime number and let m and c be given positive
integers. Prove that there exist infinitely many positive integers n such that f(p, n) ≡ c
(mod m).

S o l u t i o n 1.
We start by noting that

f(p, n) =
⌊
n

p

⌋
+
⌊
n

p2

⌋
+
⌊
n

p3

⌋
+ . . .

which is the well-known Legendre Formula. Now, if we choose

n = pa1 + pa2 + · · ·+ pak

13



for positive integers a1 > a2 > · · · > ak to be determined, this formula immediately shows that
f(p, n) =

(
pa1−1 + pa1−2 + · · ·+ p+ 1

)
+
(
pa2−1 + pa2−2 + · · ·+ p+ 1

)
+ . . .

= pa1 − 1
p− 1 + pa2 − 1

p− 1 + . . . .

We thus consider the numbers (pa − 1)/(p− 1). If we can show that there is a residue class C
(mod m) which is coprime to m occuring infinitely often among these numbers, we will be done
since we can choose a1, . . . , ak with kC ≡ c (mod m) arbitrarily among these numbers. Now,
how to find such a number C?

To this end, write m = pt ·m′ with p - m′. Since pa is certainly periodic modulo m′ · (p− 1),
the sequence (pa − 1)/(p − 1) is periodic modulo m′ with some period d and hence for
a ≡ 1 (mod d), the numbers are always 1 (mod m′). Moreover, for a ≥ t, all the num-
bers are equal to (pt − 1)/(p − 1) modulo pt and hence by the Chinese Remainder Theorem,
all the numbers (pa − 1)/(p− 1) for a ≥ t and a ≡ 1 (mod d) are in the same residue class C
(mod m), with C coprime to m, as desired.
S o l u t i o n 2.

We denote vp(n) for the largest power of p dividing n.
We start with a lemma.
Lemma. For any prime q and modulus m′ not divisible by q, there exists infinitely many

powers qn of q such that vp(qn!) ≡ 1 (mod m′).
Proof. Define ak = vq(qk!). We then have ak+1 = qak + 1. This sequence is eventually

periodic modulo m′. It must actually be periodic starting from 0, as ai ≡ ai+T (mod m′)
implies qai−1 ≡ qai+T−1 (mod m′) and therefore ai−1 ≡ ai+T−1 (mod m′), since q - m′. Thus,
for infinitely many n we have an ≡ a1 = 1 (mod m′).

We now turn to solving the problem. Write m = ptm′, where p - m′. The sequence
vp(p!), vp(p2!), vp(p3!), . . . is eventually constant modulo pt. Denote this constant by C. Since
p - C, by the Chinese remainder theorem there exists a positive integer s such that Cs ≡ c
(mod pt) and s ≡ c (mod m′). Now, choose

n = pb1 + pb2 + . . .+ pbs ,

where bi are distinct positive integers such that vp(pbi !) ≡ 1 (mod m′) (possible by the lemma)
and large enough such that vp(pbi !) ≡ C (mod pt). We have

vp(n!) = vp(pb1!) + . . .+ vp(pbs !) ≡ Cs ≡ c (mod pt)
and

vp(n!) = vp(pb1!) + . . .+ vp(pbs !) ≡ s ≡ c (mod m′),
which proves vp(n!) ≡ c (mod m). Since there are infinitely many of possible choices n, we are
done.

Comment. IMO shortlist 2007 N7 asks to prove that for given d and primes p1, . . . , pk
there exists infinitely many integers n such that d | vpi

(n!) for all i. While the IMO shortlist
problem is of similar flavor, it would seem that it is more difficult than the problem above, and
the methods are a bit different. (There is no clear way to use prime powers in the IMO SL
problem similarly to the solution above.)

Comment. As a vast generalization of the problem above and the IMO shortlist problem,
one could ask whether the following holds: For any modulus m and distinct primes p1, . . . , pk,
the function

n→ (vp1(n!) (mod m), vp2(n!) (mod m), . . . , vpk
(n!) (mod m))

(viewed as a function Z+ → (Zm)k) is equidistributed. The author of the problem believes this
generalization to hold, but he has no proof.
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Problem 18. Let n > 1 be a positive integer. We say that an integer k is a fan of n if
0 6 k 6 n− 1 and there exist integers x, y, z ∈ Z such that

x2 + y2 + z2 ≡ 0 (mod n);
xyz ≡ k (mod n).

Let f(n) be the number of fans of n. Determine f(2020).
S o l u t i o n.

Answer: f(2020) = f(4) · f(5) · f(101) = 1 · 1 · 101 = 101.
To prove our claim we show that f is multiplicative, that is, f(rs) = f(r)f(s) for coprime

numbers r, s ∈ N, and that

(i) f(4) = 1,

(ii) f(5) = 1,

(iii) f(101) = 101.

The multiplicative property follows from the Chinese Remainder Theorem.
(i) Integers x, y and z satisfy x2 + y2 + z2 ≡ 0 mod 4 if and only if they are all even. In

this case xyz ≡ 0 mod 4. Hence 0 is the only fan of 4.
(ii) Integers x, y and z satisfy x2 + y2 + z2 ≡ 0 mod 5 if and only if at least one of them is

divisible by 5. In this case xyz ≡ 0 mod 5. Hence 5 is the only fan of 5.
(iii) We have 92 + 42 + 22 = 81 + 16 + 4 = 101. Hence (9x)2 + (4x)2 + (2x)2 is divisible by

101 for every integer x. Hence the residue of 9x · 4x · 2x = 72x3 upon division by 101 is a fan of
101 for every x ∈ Z. If we substitute x = t67, then x3 = t201 ≡ t mod 101. Since 72 is coprime
to 101, the number 72x3 ≡ 72t can take any residue modulo 101.

Note: In general for p 6≡ 1 (mod 3), we have f(p) = p as soon as we have at least one
non-zero fan.

Problem 19. Denote by d(n) the number of positive divisors of a positive integer n. Prove
that there are infinitely many positive integers n such that

⌊√
3 · d(n)

⌋
divides n.

S o l u t i o n 1.
Note that

⌊√
3 · 8

⌋
= 13. Therefore all numbers with 8 divisors that are divisible by 13

satisfy the condition. There are infinitely many of those, for example, all numbers in the form
13p3, where p is a prime different from 13.
S o l u t i o n 2.

Based on the solution by the Finnish team: Instead of finding infinitely many solutions with
d(n) = 23, we prove that every power 2k, k > 0, has at least one solution with d(n) = 2k.

Let k > 0 be given, and let p1, p2, . . . be the sequence of all prime numbers. We then write
the prime factorization of b2k

√
3c as

b2k
√

3c =
∞∏
i=1

pbi
i ,

with bi > 0 and only finitely many bi different from 0.
Since

√
3 < 2, we have

2k+1 > b2k
√

3c =
∞∏
i=1

pbi
i >

∞∏
i=1

2bi = 2
∑∞

i=1 bi ,
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and from this we conclude ∑∞i=1 bi 6 k. We know that m+ 1 6 2m for any integer m > 0, and
this brings us a further estimate

∞∑
i=1
dlog2(bi + 1)e 6

∞∑
i=1

bi 6 k.

By increasing values if necessary, we can choose a sequence of non-negative integers a1, a2, . . .
such that ai > dlog2(bi + 1)e for all i, and ∑∞

i=1 ai = k. [Editor’s note: In fact, unless∑∞
i=1dlog2(bi + 1)e = k already, we have an infinite choice of such sequences – each leading to a

distinct n with the required properties.] We now define

n =
∞∏
i=1

p2ai−1
i

which is a valid product since all but finitely many ai are equal to zero. By construction we
have 2ai − 1 > bi for all i, so b2k

√
3c divides n. Finally, the number of divisors in n can be

calculated as
d(n) =

∞∏
i=1

((2ai − 1) + 1) =
∞∏
i=1

2ai = 2
∑∞

i=1 ai = 2k,

so n satisfies that bd(n)
√

3c = b2k
√

3c divides n.
S o l u t i o n 3.

Based on the solution by the Norwegian team: In this third solution, instead of letting d(n)
be a power of 2, we prove that there a infinitely many solutions with n = 2k.

Consider the sequence ai = bi
√

3c for i > 1. If k > 3, then (k + 1)
√

3 < 2(k + 1) 6 2k.
Consequently, whenever ak+1 = 2m and k > 3, we get

bd(2k)
√

3c = b(k + 1)
√

3c = ak+1 = 2m | 2k

so n = 2k satisfies the properties of the problem. It is therefore sufficient to prove that the
integer sequence ai = bi

√
3c contains infinitely many powers of 2. Since

√
3 > 1, the sequence is

strictly increasing, and since
√

3 < 2, we have

ai+1 − ai = b(i+ 1)
√

3c − bi
√

3c < (i+ 1)
√

3− (i
√

3− 1) =
√

3 + 1 < 3.

Hence the sequence jump by at most 2 at each step.
Suppose for contradiction that the sequence constains only finitely many powers of two, say

the largest is 2N . Then for every m > N we can find a unique index k such that ak = 2m − 1
and ak+1 = 2m + 1.

Define di = i
√

3− ai to be the fractional part for each i, so that 0 6 di < 1. For k as above
we then have

k
√

3− (2m − 1) = dk > 0,
(k + 1)

√
3− (2m + 1) = dk+1 > 0,

and thus (2k + 1)
√

3− 2m+1 = dk + dk+1 > 0.

If dk+dk+1 < 1, we would have a2k+1 = 2m+1 contrary to our assumptions, hence 1 6 dk+dk+1 < 2
and consequently a2k+1 = 2m+1 + 1 and a2k = 2m+1 − 1.

Since a2k = 2m+1 − 1, we have a recursive expression for d2k as well:

d2k = 2k
√

3− (2m+1 − 1) = 2(dk + 2m − 1)− (2m+1 − 1) = 2dk − 1.

We can now repeat the process with 2k and 2k + 1 in place of k and k + 1 in order to prove the
following statements by induction for all j > 0:
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• a2jk = 2m+j − 1 and a2jk+1 = 2m+j + 1

• d2jk = 2jdk − (2j − 1) = 2j(dk − 1) + 1

Finally, since dk − 1 < 0, the second property implies that d2jk tends to −∞ as j tends to ∞.
This clearly contradicts that d2jk > 0 for all k and j, hence we conclude that the sequence ai
contains infinitely many powers of 2 as required.

Problem 20. Let A and B be sets of positive integers with |A| ≥ 2 and |B| ≥ 2. Let S be a
set consisting of |A|+ |B| − 1 numbers of the form ab where a ∈ A and b ∈ B. Prove that there
exist pairwise distinct x, y, z ∈ S such that x is a divisor of yz.
S o l u t i o n 1.

We use induction on k = |A|+ |B| − 1.
For k = 3 we have |A| = |B| = 2. Let A = {x, y}, B = {z, t}. Then S consists of three

numbers from the set {xz, yz, xt, yt}. Relabelling the elements of A and B if necessary, we
can assume without loss of generality that the missing number is yt. Then xz, xt, yz ∈ S and
xz | xt · yz which concludes the base case of induction.

For the inductive step, suppose the thesis holds for some k−1 ≥ 3. Since k = |A|+ |B|−1 ≥
4, we have that max(|A|, |B|) ≥ 3, WLOG assume |B| ≥ 3. Since the set S consists of
k = |A|+ |B| − 1 > |A| elements, by pigeonhole principle there exists a number x ∈ A which
appears as the first of the two factors of at least two elements of S. So, there exist y, z ∈ B
with xy, xz ∈ S. If there exists t ∈ A \ {x} such that ty ∈ S and ty 6= xz, then we are done
because xy | xz · ty. If there exists no such t then apply the inductive hypothesis to the sets A,
B \ {y} and S \ {xy} – note here that every element of S \ {xy} still has the form ab for a ∈ A
and b ∈ B \ {y}.
S o l u t i o n 2.

Based on the solution by the Latvian team: We construct a bipartite graph G where the
elements of A form one class of vertices, and the elements of B form the other class of vertices.
For each element s ∈ S write s = ab with a ∈ A and b ∈ B then put a single edge between
a and b in G (if s decomposes as ab in multiple ways, only place an edge for one of these
decompositions). Now suppose G has a path of length 3, i.e.

a b a′ b′
y = ab x = a′b z = a′b′

,

then x | yz and since each element of S only labels one edge, x, y and z are distinct. It is thus
sufficient to show that if |A|, |B| > 2 and |S| = |A| + |B| − 1, then G has a path of length 3.
We shall prove the contrapositive statement: If |S| = |A|+ |B| − 1 and G has no path of length
3, then |A| = 1 or |B| = 1.

Suppose G is bipartite and has no path of length 3, then in particular G has no cycles, so G
is a forest (a collection of trees). The number of trees in a forest can be calculated as

#vertices−#edges = (|A|+ |B|)− (|A|+ |B| − 1) = 1,

hence G is a single tree. If G is a tree and has not path of length 3, then G has to be a star
graph. A bipartite star graph necessarily has the central vertex in one class and all the leaves in
the other class, hence either |A| = 1 or |B| = 1 as required.
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