
November 17th, 2019
Version: English

Time allowed: 4.5 hours.
During the first 30 minutes, questions may be asked.
Tools for writing and drawing are the only ones allowed.

Problem 1. For all non-negative real numbers x, y, z with x ≥ y, prove the inequality

x3 − y3 + z3 + 1
6

≥ (x − y)
√

xyz.

Problem 2. Let (Fn) be the sequence defined recursively by F1 = F2 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 2. Find
all pairs of positive integers (x, y) such that

5Fx − 3Fy = 1.

Problem 3. Find all functions f : R→ R such that

f (x f (y) − y2) = (y + 1) f (x − y)

holds for all x, y ∈ R.

Problem 4. Determine all integers n for which there exist an integer k ≥ 2 and positive integers x1, x2, . . . , xk so
that

x1x2 + x2x3 + . . . + xk−1xk = n and x1 + x2 + . . . + xk = 2019.

Problem 5. The 2m numbers
1 · 2, 2 · 3, 3 · 4, . . . , 2m(2m + 1)

are written on a blackboard, where m ≥ 2 is an integer. A move consists of choosing three numbers a, b, c,
erasing them from the board and writing the single number

abc
ab + bc + ca

.

After m − 1 such moves, only two numbers will remain on the blackboard. Supposing one of these is 4
3 , show

that the other is larger than 4.

Problem 6. Alice and Bob play the following game. They write the expressions x + y, x − y, x2 + xy + y2 and
x2 − xy + y2 each on a separate card. The four cards are shuffled and placed face down on a table. One of the
cards is turned over, revealing the expression written on it, after which Alice chooses any two of the four cards,
and gives the other two to Bob. All cards are then revealed. Now Alice picks one of the variables x and y, assigns
a real value to it, and tells Bob what value she assigned and to which variable. Then Bob assigns a real value to
the other variable.

Finally, they both evaluate the product of the expressions on their two cards. Whoever gets the larger result,
wins. Which player, if any, has a winning strategy?

Problem 7. Find the smallest integer k ≥ 2 such that for every partition of the set {2, 3, . . . , k} into two parts, at
least one of these parts contains (not necessarily distinct) numbers a, b and c with ab = c.

Problem 8. There are 2019 cities in the country of Balticwayland. Some pairs of cities are connected by
non-intersecting bidirectional roads, each road connecting exactly 2 cities. It is known that for every pair of
cities A and B it is possible to drive from A to B using at most 2 roads. There are 62 cops trying to catch a robber.
The cops and robber all know each others’ locations at all times. Each night, the robber can choose to stay in her
current city or move to a neighbouring city via a direct road. Each day, each cop has the same choice of staying
or moving, and they coordinate their actions. The robber is caught if she is in the same city as a cop at any time.
Prove that the cops can always catch the robber.
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Problem 9. For a positive integer n, consider all nonincreasing functions f : {1, . . . , n} → {1, . . . , n}. Some of
them have a fixed point (i.e. a c such that f (c) = c), some do not. Determine the difference between the sizes of
the two sets of functions.

Remark. A function f is nonincreasing if f (x) ≥ f (y) holds for all x ≤ y.

Problem 10. There are 2019 points given in the plane. A child wants to draw k (closed) discs in such a manner,
that for any two distinct points there exists a disc that contains exactly one of these two points. What is the
minimal k, such that for any initial configuration of points it is possible to draw k discs with the above property?

Problem 11. Let ABC be a triangle with AB = AC. Let M be the midpoint of BC. Let the circles with diameters
AC and BM intersect at points M and P. Let MP intersect AB at Q. Let R be a point on AP such that QR ‖ BP.
Prove that CP bisects ∠RCB.

Problem 12. Let ABC be a triangle and H its orthocenter. Let D be a point lying on the segment AC and let E
be the point on the line BC such that BC ⊥ DE. Prove that EH ⊥ BD if and only if BD bisects AE.

Problem 13. Let ABCDEF be a convex hexagon in which AB = AF, BC = CD, DE = EF and ∠ABC =

∠EFA = 90◦. Prove that AD ⊥ CE.

Problem 14. Let ABC be a triangle with ∠ABC = 90◦, and let H be the foot of the altitude from B. The points
M and N are the midpoints of the segments AH and CH, respectively. Let P and Q be the second points of
intersection of the circumcircle of the triangle ABC with the lines BM and BN, respectively. The segments AQ
and CP intersect at the point R. Prove that the line BR passes through the midpoint of the segment MN.

Problem 15. Let n ≥ 4, and consider a (not necessarily convex) polygon P1P2 . . . Pn in the plane. Suppose that,
for each Pk, there is a unique vertex Qk , Pk among P1, . . . , Pn that lies closest to it. The polygon is then said to
be hostile if Qk , Pk±1 for all k (where P0 = Pn, Pn+1 = P1).

(a) Prove that no hostile polygon is convex.
(b) Find all n ≥ 4 for which there exists a hostile n-gon.

Problem 16. For a positive integer N, let f (N) be the number of ordered pairs of positive integers (a, b) such
that the number

ab
a + b

is a divisor of N. Prove that f (N) is always a perfect square.

Problem 17. Let p be an odd prime. Show that for every integer c, there exists an integer a such that

a
p+1

2 + (a + c)
p+1

2 ≡ c (mod p).

Problem 18. Let a, b, and c be odd positive integers such that a is not a perfect square and

a2 + a + 1 = 3(b2 + b + 1)(c2 + c + 1).

Prove that at least one of the numbers b2 + b + 1 and c2 + c + 1 is composite.

Problem 19. Prove that the equation 7x = 1 + y2 + z2 has no solutions over positive integers.

Problem 20. Let us consider a polynomial P(x) with integer coefficients satisfying

P(−1) = −4, P(−3) = −40, and P(−5) = −156.

What is the largest possible number of integers x satisfying

P
(
P(x)
)

= x2?
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